CS 3110 Problem Set 6: Steam Kart

Assigned: November 13, 2009 Final submission due: December 4th (no extensions)
Design meetings: November 17th - November 20th

1 Introduction

In this assignment, you will develop a game called Steam Kart, a variation on the game Mario Kart. Each car will be
run as a separate process, communicating through channels with a game server that executes actions and enforces the
rules.

You will implement the mechanics for this game in OCaml, as well as the code for a car to play the game. We
have provided you with some graphical support that you can use to display the game. Source code for getting started
on this project is available in CMS.

There are few constraints on how you implement this project. This does not mean you can abandon what you have
learned about abstraction, style and modularity; rather, this is an opportunity to demonstrate all three in the creation
of elegant code.

You should start by carefully designing your system, and presenting this design at a design meeting where you will
meet with a course staff member to discuss your design. Part of your score will be based on the design you present at
this meeting.

On December 13, after the problem set is due, there will be a Steam Kart tournament which you are encouraged
to submit your bot programs to. There will be lots of free food, and the chance to watch your bot perform live. The
winner gets bragging rights and will have their name posted on the 312/3110 Tournament hall of fame.

http://www.cs.cornell.edu/andru/cs312/tournaments.html

1.1 Reading this document

The types referenced in this document that are not default in OCaml are defined in definitions.ml. Constants
follow the following naming convention: they begin with a lowercase c, and the rest is a descriptive name of the
constant in all caps. For example, cTRACK_WIDTH specifies the width of the track. The reason for this mysterious c
in front of all the constants is that OCaml actually doesn’t allow value names to begin an uppercase letter - only type
constructors can do that.

1.2 Updates to Problem Set

e 11/15: Added note that the InitGraphics graphics update must be sent by itself, and revised what the server
module does.

11/15: Added Countdown to the update type.

11/16: Added various clarifications based on questions in the PS6 overview sections:

— Armors protect you from tesla coils

— Only pass activated hazard items to Movement .update

11/19: Added clarification about ScanData and lap number.

11/24: Fixed typo in the specification of ScanData. All positions should be in (¢, w) coordinates, not (z,y)
coordinates.

11/26: Switched default port numbers (for KOTH server).

1.3 Point Breakdown

e Design meeting — 5 pts

Game — 35 pts
Car — 35 pts

Documentation and design — 10 pts

Written problem — 15 pts

2 Game Rules

Steam Kart is a multiplayer game in which each player controls a car. The cars race around a track, attempting to
complete cLAPS laps first. They can pick up items which give them special abilities they can use.

The details of how the cars communicate with the game server are contained in Section 3. You may wish to reread
this section again after having read and absorbed the information on communication.

Information on the structure of the code we have provided as a framework for implementing the rules described in
this section can be found in Section 6.

2.1 Board

We have provided a type board to represent the board, as well as some useful functions for them in definitions.ml.
You will not need to modify the Board module (however, you may if you’d like). Boards will be loaded from text files
as described in Section 4.

2.1.1 Track

The track is represented as a closed piecewise smooth parametric function. If you are unfamiliar with these terms, the
Wikipedia’s articles on parametric functions and piecewise functions give nice descriptions for those terms. Smooth
means that the derivatives are continuous, and closed means that the beginning and the end of the track are joined.
These functions represent x and y in terms of ¢, and represent the center of the track. The tracks have constant width
(cTRACK_WIDTH). A position on the track is represented in (¢, w) coordinates. Intuitively, ¢ represents how far along
the track the position represents, and w represents the position across the track. w will be represented as a float in
[—1/2,1/2], representing the distance from the center as a fraction of cTRACK_WIDTH. To represent these functions,
we will use the expressions code from PS2. We have provided our PS2 solution so you don’t have to debug yours if it
doesn’t work.

We will refer to a “segment” as a part of the track corresponding to one of the parametric functions in the piecewise
curve.

The (expr * expr) array in the board type specifies the parametric functions for each segment, in the form
(z(t),y(t)). The first float array contains the domains for these functions. To explain what that means, let
[fo(t), ..., frn_1(t)] be the array of functions, with f;(t) = (x;(¢), y:(t)), and [to, ..., t,] be the domain array. Then
the domain of f; is [t;,t;+1]- In other words, if f represents the entire piecewise function, then f is defined on the
interval [to, t,,], and:

fn—l(t) te [tn—latn}

Note that the length of the domain array is 1 bigger than the length of the function array. The requirement that
the board is closed and piecewise smooth means that the following equations hold for all i« € [0,n — 1] (where

fi(t) = (2(8), yi(1))):

filtiv1) = fir1(tiv1)
fittiva) = fip1(tiv)

where just to make the notation easier, f,, = fy. In other words, f; ends where f; 1 begins, and the derivative of f; at
the end of its domain is the same as the derivative of f;; 1 at the beginning of its domain (ie, there are no corners).

2.1.2 Road Types

There are four road types: Speedup, Normal, Slowdown, Water, in order of fastest to slowest. They will each
have an associated friction used in the physics module to calculate the new velocity in terms of the currect velocity
and acceleration.

Each segment is split (parallel to the direction of the track, like lanes of a road) into 4 pieces. Each piece of each
segment has its own road type. The outer two pieces will have width 1/8 of the width of the track (cOUTER_LANES_WIDTH),
and the inner two pieces will have width 3/8 the width of the track (cCENTER_LANES_WIDTH). The board type contains
a (roadtype * roadtype * roadtype * roadtype) array to store the road types for each segment.

2.1.3 Item Box Rows

Item boxes are boxes that cars can hit to receive an “item”, which gives them some ability, as described in Section 2.5.
Just like in Mario Kart, item boxes appear in rows across the track at various points. How they will be placed in a row
will be discussed in Section 2.5.4. But the locations of these rows are stored in the board type, in the second float
array. The locations of the rows are specified by their ¢ coordinate.

http://en.wikipedia.org/wiki/Parametric_equation
http://en.wikipedia.org/wiki/Piecewise

2.1.4 Time Limit

The board type also stores a float that corresponds to the time limit for a race on the board (in seconds). The reason
this is stored in the board type and not just a constant is that some boards will be longer than others. So a reasonable
time limit for one board may be way too short for another.

2.2 Winning

A car completes the race when it finishes cLAPS laps. When that happens, the car is instantly removed from the board,
and no longer has any effect on the game. The game continues until either all cars have completed the race, or until
the time limit for the board has passed, whichever comes first. If the game ends because time runs out, then the cars a
placed according to how close they were to finishing the race. In other words, if car A and car B both did not complete
the race, but car A completed more laps than car B, then car A places ahead of car B. If they both completed the same
number of laps, then the car with the higher ¢ value wins. If they have exactly the same ¢ value (which probably won’t
ever happen), then just arbitrarily pick who wins.

2.3 Cars

Each car is controlled by its own process. The car is controlled by sending messages to the game server, as discussed in
Section 3. Each car has a unique id, which is determined by the game server and sent to the AI when the car connects
to the game server.

In addition to its unique id, each car has the following attributes:

1. position on the board, in (¢, w) coordinates

2. velocity

3. acceleration

4. items that are buffered, held or currently being used by the car
5. lap number

6. character

The first three attributes are all float * float tuples, the fourth is discussed in Section 2.5, the fifth is the number
of laps completed so far (it starts at 0, and the car is finished when its lap equals cLAPS), and the last is discussed in
Section 5.3. Note that the position of the car is the position of the center of the car.

Cars control their movement by specifying their acceleration as a tuple (a,, a,/). How their position is updated is
discussed in Section 2.6.1. Cars can also use items and receive information about the area around them.

2.4 Initial Positioning

In Steam Kart, there is a maximum of four cars in a race. The initial positioning is in a row along the track at t = 0,

with the first car to join the game at w = 1/8, the second at w = —1/8, the third at w = 3/8, and the fourth at
w=—3/8.
2.5 ltems

2.5.1 Items Overview

Just like in Mario Kart, item boxes appear throughout the map. A car can acquire an item by driving into an item box.
The items give the cars special abilities. The items are as follows: Oil Slicks, Pressure Mines, Steam Shells, Turbo
Encabulators, Tesla Coils, and Armors. For those of you familiar with Mario Kart, here is the conversion from Steam
Kart items to Mario Kart items:

Steam Kart: Mario Kart:
Oil Slick Banana
Pressure Mine Fake Box
Steam Shell Red Shell
Turbo Encabulator Mushroom
Tesla Coil Lightning Bolt
Armor Star

Cars can have up to two items at one time: a buffered item and a held item. When a car hits an item box, the item is
placed in their “buffer”. The items that represent tangible objects, as opposed to abilities, are “holdable”. These items
are the steam shells, oil slicks and pressure mines. The best way to think about this is that they pick up the box and
put it in their backpack. However, if they already have a buffered item, then their backpack is full, so they can’t keep
the item: they just pick it up and throw it away. If the item in their buffer is a holdable item, they can take it out of
their backpack and hold it in their hand. This means that if a car hits an item box when they are just holding an item,
the new item is added to their buffer.

A held item also protects the car from other tangible items. Continuing the above analogy, if a car is holding an
item, it uses it to block other tanglible items from affecting it. However, when that happens, the held item breaks, so
it loses its held item.

When a car uses an item, it is instantly removed from its buffer/hand (depending on which item the car used).

2.5.2 Item Details

Below is a detailed description of what each item does:

e 0ilSlick: A bottle of oil that the car can drop on the track, trying to cause other cars to slip. When used,
an oil slick is placed at the car’s current position. It has an activation time of cOIL_SLICK_ACTIVATION_TIME
seconds, meaning it takes cOIL_SLICK_ACTIVATION_TIME seconds until cars can slip on it. The activation time
is to prevent the car from instantly being hit by the item after it drops it. When a car hits an oil slick, the car
crashes, which will be defined in Section 2.6.2, and the oil slick disappears from the track.

e PressureMine: This is very similar to an oil slick, except that once used, it looks like an item box. As described
later, when other cars scan the board around them, pressure mines appear in their list of item box positions.

e SteamShell: When a car shoots a shell, the shell chases the car immediately ahead of the car with speed
cSTEAM_SHELL_VELOCITY. When the shell hits a car (any car, not necessarily the one it is chasing), it causes that
car to crash. If the shell hits a wall, the shell disappears. If the shell hits another item on the board (including an-
other shell), both the item and the shell disappear. Shells also have an activiation time of cSHELL_ACTIVATION_TIME.
Note, assigning the shell’s velocity is done in code we’ve given you; however, you need to calculate which car
the shell should chase after. If there is only one car in the race, the shell should do nothing.

e TurboEncabulator: Gives the car an immediate velocity boost. Specifically, when a car uses a turbo encabu-
lator, its velocity is immediately multiplied by cTURBO_ENCABULATOR_VEL_MQOD. As discussed in Section 2.6.1,
the car’s velocity will be slowly lowered back to normal by the max acceleration and friction, which implies that
unlike the mushroom in Mario Kart, the turbo encabulators do not have a timing aspect.

e TeslaCoil: The maximum speed of all other cars is decreased temporarily. More precisely, for cTESLA_COIL_TIME
seconds, cCOIL_FRICTION_MOD is added to the friction for all other cars. This will be discussed in more detail
in Section 2.6.1.

e Armor: The maximum speed of this car is increased and the car is immune to other items for cARMOR_TIME
seconds. How the max speed change is implemented is similar to the coil: cARMOR_FRICTION_MOD is added to
the car’s friction. The car being immune to other items means that if it hits an item or gets hit by a shell, the
item/shell disappears and has no effect on the car. Similar for tesla coils: if car A is using an armor when car B
uses a tesla coil, car A is unaffected by the tesla coil.

2.5.3 ltem Terminology

Here are a few terms used to describe items:

Holdable: Holdable items are items that represent tangible objects, rather than an ability. Steam shells, oil slicks and
pressure mines are holdable, the rest aren’t.

Hazard Item: A hazard item is a used item on the track that has not been hit yet. So when a car uses an oil slick
or a pressure mine, it becomes a hazard item. Once a hazard item is hit by a car or a shell, it is deleted from
the board, so is no longer a hazard item. Shells are not considered hazard items because they are very different
since they move.

Active Item: At any point in time, each car has some set of items acting upon it. For this definition, we are only
concerned with items that have a timing aspect (so everything except turbo encabulators), so along with each
item is the amount of time remaining that that item affects the car. So for example, if a car uses an armor, then
an armor is added to its active items for cARMOR_TIME seconds.

2.5.4 Item Boxes

Item boxes appear in rows across the track at the points specified in the board type. In each row, there are four
item boxes, at w-coordinates —3/8, —1/8, 1/8 and 3/8. When a car hits an item box, the item box disappears for
cITEM_BOX_RESPAWN_TIME seconds. As discussed earlier, if the car’s buffer is empty, they receive a random item.
Note that the item box disappears regardless of whether the car’s buffer was full or not.

2.6 Movement
2.6.1 Basic Physics

Cars direct their movement by setting their acceleration in (x,y) coordinates. Hint for the AIl: The direction of the
track at point ¢q is the vector (z'(to), v’ (t0)).

cMAX_ACCEL is the maximum acceleration allowed (in terms of the norm of (a.,a,)). So if a car tries to set
its acceleration to (a, ay) where |(as,a,)| > cMAX_ACCEL, truncate the vector so that it has length cMAX_ACCEL.
Specifically, set the acceleration to be:

CMAXACCEL()
———(az,a
(az,ay)]

Note that the max acceleration along with the friction on the track induces a maximum velocity for the car. You don’t
need to understand the physics behind that... One thing to note if you know something about physics is that “friction”
in our game is backwards: in our game, a higher friction means the car can go faster.

Each road type has its own friction value (cSPEEDUP_FRICTION, cNORMAL_FRICTION, cSLOWDOWN_FRICTION and
cWATER_FRICTION). The items that affect a car’s friction (TeslaCoil and Armor) add their corresponding friction
modifications onto the friction from the road type. So if an armored car is on a slowdown road type, then its friction is
cSLOWDOWN_FRICTION+cARMOR_FRICTION_MOD.

2.6.2 Crashes

A car crashes when it collides with a hazard item or a shell. When this happens, its velocity and acceleration are
immediately set to 0, and it is unable to move for cHIT_TIME_DELAY seconds. Also, during that time, it cannot be hit
by anyone or anything else.

2.6.3 Code Given

We have provided the code to update the positions and velocities of the cars, items and shells. The modules containing
this code are the Physics module and the Movement module. The only function you should need to call directly in
the Physics module is trackToCartesian, which converts a point in (¢, w) coordinates to (x,y) coordinates.

The Movement module exposes the following types. This list is meant to supplement movement.mli, so you
should look at that in addition to this list.

Type Description

in_car_state Contains the car’s id, position, velocity, acceleration, active items, and a boolean indicating whether the
car is currently holding an item

in hz_state Contains the item and position of the hazard item

in_shell_state Contains shell’s id, position, velocity, activation time left, and the position of the car it is chasing
in_item_box Contains the item box’s position

out_car_state Contains the car’s id, new position, new velocity, a list of hazard items/shells it hit, a list of items it
acquired from item boxes, and a boolean indicating whether the car is still holding an item

out_hz_state Contains a boolean indicating whether the hazard item should be deleted, with true meaning that it
should be deleted

out_shell _state Contains the shell’s id, new position and new velocity

out_item_box Contains a boolean indicating whether the item box was hit

The Movement module also exposes the function update. This function takes in the board, the time that has passed
since the last update, and the current state of the cars, hazard items, shells and item boxes, and outputs the new state
for them. You will use this function in Game . handleTime to update the data for these objects. Here is how to use it:

1. Convert your state representation to lists of types in_x.

2. Call Movement .update on those lists along with the board and the amount of time that has passed since the last
update.

3. Update your state representation according to the output of Movement . update. The lists update return will be
in the same order as the input lists. In other words, if boxes is your list of in_item box’s, and boxes’ is the
list of out_item_box’s that update returns, the i element of boxes’ indicates whether the i box of boxes
was hit during the time step.

Note that update treats all hazard items as activated, so you should only pass the list of activated items to update.
The same is NOT true for shells however (ie, you should send the list of all shells to the update function). This is
because an unactivated shell moves, so its data still needs to be updated.

3 Communication
3.1 Client-Server Framework

Steam Kart makes use of a client-server framework. Under this framework, the game server is responsible for keeping
track of the game state, applying the game rules, and so on. Clients (i.e., cars) are run as an entirely separate process
and can keep track of whatever information they want, but need to send messages to the server to perform game actions
or receive information.

Cars communicate with the game server by sending information over channels. The protocol for messages is
defined by the type command in definitions.ml.

There are three types of messages defined in the protocol:

e control messages, which deal with starting and ending the game
e action messages, which always come with the id of the car and cause the car to perform various actions
e result messages, which always come with the id of the car and return information requested by an action

See the sections below for details on the three types of messages.

3.2 Communication as a client

When your car first starts, it should open a connection to the server using the included Connection module, and
send a GameRequest message. The server will then respond with an Id message containing an id for the car. Each
action message sent by a unit must include this id to uniquely identify the given unit. The car then waits to receive a
GameStart message from the server. When the car receives that message, the game has begun and it may start racing.

3.3 Control Messages

Control messages are exchanged between the cars and the server to manage the beginning and end of the game.

3.3.1 Control Quick Reference

GameRequest Request to start a game, with the desired character as an argument.

Id Response to GameRequest, provides a unique id for that car.

GameStart Informs the car that the game has started.

GameEnd Informs the car that the game has ended and/or that the car has finished the race. Contains an int
indicating what place the car was in, and a float indicating how long it took for the car to finish
the race.

3.4 Action Messages

Action messages are sent by the client to the server, and tell the server to perform the given action. The possible
actions are defined in definitions.ml as the action type. All action messages come with an id indicating which
car is attempting the action.

3.4.1 Action Quick Reference

GetBoard Returns the board.

SetAccel Sets the car’s acceleration.

Brake Stops the car completely.

UseIltem Uses an item, if available.

HoldItem Holds an item, if available.

Scan Returns a list of cars, hazard items and item boxes in range.

MyStatus Returns the car’s position, velocity, acceleration, held and buffered items, current place, and lap number.
Talk Outputs a string to the chat area.

3.4.2 Action Specification

The following table describes the effects of the possible actions.

Command Args Returns

GetBoard none Board(b) where b is the board.

SetAccel (awx,ay) Success or Failed Sets the car’s acceleration to be the float tuple (az, ay). Fails if either ax

or ay are infinity, negative infinity or “not-a-number”.

Brake none Success Set’s the car’s velocity and acceleration to 0.

UseIltem none Success or Failed If the car is currently holding an item, use that item. Otherwise, use its

buffered item. If it does not have a held item or a buffered item, return
Failed.

HoldItem none Success or Failed If the car is currently not holding an item, and it’s buffered item is a hold-

able item, hold that item. Otherwise, return Failed.

Scan none ScanData(cars, cars is a (position * held_item * place * lap) list containing
boxes, items) information for all other cars that have not finished the race (so the car

that called Scan is NOT in this list). If the car is out of range (fur-
ther than ¢SCAN_HELD_ITEM_RADIUS away from the calling car in terms
of (x,y) distance), then the held_item should be OutOfRange. Other-
wise, it should be WithinRange of the item that car is holding. boxes
is a position list containing the positions of item boxes and pres-
sure mines within range of the car (within cSCAN_ITEM BOX_RADIUS
of the car). items is a (item * float * float * float) list
containing information for all the oil slicks and shells within range
(cSCAN_HAZARD_ITEM RADIUS), where the first two floats are (¢, w) and
the last one is the amount of time until the item is activated.

MyStatus none MyData(pos, vel, active_itemsisa (item * float) list containing all items that are cur-
acc, held, buffered, rently affecting the car, with the amount of time left for that item. The rest
active_items, place, of the arguments should be self-explanatory.
lap)

Talk s Success Outputs the string s to the chat area

Note that after a car has finished the race and/or the race is over, the response to all actions from that car should be
GameEnd with the car’s place and end time as arguments.

3.5 Result Messages

Result messages are sent by the server to the car client in response to action messages. The possible results are defined
in definitions.ml as the result type. All result messages come with an id indicating which unit is getting the
response.

Every action message is responded to with some result message. Most actions simply get back a result of either
Success or Failed, but actions dealing with information receive the requested data as the result. Further details are
contained in the action specification above, including when to return the various result messages and what data to
include.

3.5.1 Result Quick Reference

Success The action was successful.

Failed The action failed.

ScanData Result of a Scan action.

MyData Result of a MyStatus action.

Board Result of a GetBoard action.
4 Boards

Games of Steam kart may be played on a variety of tracks. Boards are stored in text files, and the server loads a board
file at the start to use for the current game by first using the function Game .loadBoard to parse the board file into a
board, and then passing that to Game . initGane.

How a board file is specified is shown in board.mli. It is not important that you understand this unless you want to
make your own boards.

5 GUI
5.1 GUI Client

In order to view the game, you will have to set up a GUI client program. The client has been coded for you, and is
located in the client directory. The client renders the game using OpenGL. This module will be sufficient for simple
rendering of the game, though you are welcome enhance it for karma if you wish (with the full power of OpenGL
available to you, a much fancier interface is possible). To use the GUI, you must install a library called lablGL, which
provides OpenGL bindings for OCaml. Installation of this library is fairly simple, and we have provided instructions
in dependencies.zip.

The game server is responsible for sending graphical update messages to the GUI, as described below. The game
server will listen for clients to send the updates to throughout the game. However, if a GUI connects halfway through
the game, it will have missed the message that initialize the board. So be sure the GUI connects before the game starts
if you want to be able to see everything. In other words, start the process for the GUI before you start the processes
for the cars.

5.2 Sending messages to the GUI

We have provided a simple module called Netgraphics with functions to send graphical updates. The functions are
specified in netgraphics.ml. Note that the init function is called by the Server module, and sendUpdates is
called reguarly by the Server module. So in order to send a graphics update to the clients, the game module calls
Netgraphics.addUpdate with the appropriate update type. The one exception to this is that the InitGraphics up-
date must be sent by itself, so the game module should send this update directly by calling Netgraphics.sendUpdate.

5.3 Characters

When a car requests a game, it specifies which character it wants to be. We have included all of the characters from
Mario Kart 64 (Mario, Luigi, Bowser, Yoshi, Donkey Kong, Peach, Toad and Wario), plus a Custom character. The
custom character allows a bot to pick its own images to display. To do so, the bot sends Custom(s1,s2) as its
character, where s1 is the filename of the image to display normally and s2 is the image to display when the car has
crashed. Here are the requirements for the images:

1. Must be bitmaps (. bmp).
2. Must be 64 x 64 pixels in size.

3. Treat black (i.e., RGB value 0, 0, 0) as transparent. If you want to make a bot image that uses black, instead use
something very close to black (like RGB value 0, 0, 1). To accomplish this in photoshop, put the image you’d
like to use on one layer, then go to Image, Adjustments, Replace Color. Then set the selection color to 0, 0, 0 and
set the replacement color to 0, 0, 1. Then set the background layer to be black (0, 0, 0). I’'m sure other programs
have similar options...

4. The images should face to the right, meaning the unrotated image should be what you want to be shown when
the car is moving to the right.

The custom images should be placed in the bmp directory. Note that the bot only specifies the filenames, not the whole
image, so if the files aren’t present on the computer the GUI is running on, the GUI will not be able to find the images.
If the GUI can’t find the images, it will display Mario instead.

10

5.4 Graphics Commands

Arguments Meaning
InitGraphics board Tell the GUI client to initialize the graphics
Countdown int Tells the GUI how many seconds to the game starts
DisplayString car_id * string Display a string to the GUI
AddCar car_id * position * velocity * Tells the GUI to add the car
character
UpdateCar car_id * position * velocity * Updates the data for the car with the given id number. The
bool * item * item first item is the held item, and the second item is the buffered
item. The bool indicates whether the car is currently crashed.
RemoveCar car_id Remove the car with the given id from the board
AddItemBox position Adds an item box at the given position in (¢, w) coordinates
UpdateItemBox position Adds an item box in the given position if one doesn’t already
exist there, otherwise, does nothing.
RemoveItemBox position Removes the item box at the given position in (¢, w) coordi-
nates
AddHazardItem position * item Adds a hazard item at the given position
RemoveHazardItem position Removes the hazard item from the given position
AddShell int * position * velocity Adds a shell. The int is an id for the shell. At any point in time,
there must be only one shell with a particular id. However,
after a shell is removed, you may reuse its id.
UpdateShell int * position * velocity Updates the shell with the given id
RemoveShell int Removes the shell with the given id
GameQOver (car_id * float) list Notifies the GUI that the game is over. The (car_id*float)

list is the list of cars and the time they took to finish the race,
in order of 1st place, 2nd place,

6 Provided source code

Many files are provided for this assignment. Most of them you will not need to edit at all. In fact, you should only edit
and/or create new files in the game and bot directories (plus any edits you need to make to the compilation scripts).
Here is a list of all the files included in the release and their contents.

buildx*.bat

Build scripts for the game server, teams, and GUI client (see Section 7)

game/constants.ml
game/definitions.ml
game/expression.mli
game/expression.ml
game/board.mli
game/board.ml
game/physics.mli
game/physics.ml
game/movement .mli
game/movement .ml
game/game .m1i
game/game .ml
game/state.mli
game/state.ml
game/util.ml
game/netgraphics.mli
game/netgraphics.ml
game/server.ml
shared/connection.mli
shared/connection.ml

Definitions of game constants

Definitions of game datatypes

Signature file for expression helper module
Implementation of expression helper module
Signature file for the board module

Implementation of the board module

Signature file for the physics module
Implementation of the physics module

Signature file for the movement module
Implementation of the movement module

Signature file for handling actions, time, rules, and the game state
Stub file for actions, rules, and time

Partial signature for the game state

Stub file for the game state

General use helper functions

Signature file for sending updates to the GUI client
Implementation of sending updates to the GUI

Starts the game server and deals with communication
Signature file for connection helper module
Implementation of connection helper module

11

shared/thread_pool.mli Signature file for thread pool helper module
shared/thread_pool.ml Implementation of thread pool helper module

bot/bot.ml Sample bot that demonstrates how to start a game and send actions
client/graph.ml Implementation of graphics module

boards/* Various sample boards (see Section 4)

bmp/* Graphics files for the GUI and code needed for the GUI

6.1 Code Structure

To understand how to implement the game, you must first understand how the code we have provided you operates.
The crucial aspect to understand is the relation between the Server module and the Game module. The server module
deals primarily with receiving connections from the teams, and calls the Game module for all issues related to the
game rules. You do not need to modify the Server module, graphics commands, or GUI client. Your modifications and
additions will take place in the Game module, State module, and any other modules you choose to add.

6.2 Server

At a high level, server.ml does the following things:
1. Calls Netgraphics.init, which accepts connects from GUI clients
Waits until for enough cars to join the game (see Section 7.2 for more details)
Calls Game . 1loadBoard
Calls Game . initGame with the result of Game . 1loadBoard
Calls Game . initCar once for each car, and sends Id message to each car
Starts the countdown, and after 3 seconds, calls Game . startGame and sends GameStart messages to each car
Spawns a thread that regularly calls Game .handleTime with the current time

Spawns a thread that regularly calls NetGraphics.sendUpdates

A S I U

Spawns a thread for each car that listens for action messages
10. Enters loop that accepts new connections from cars (if their old connection breaks)

You will need to think carefully about how you design and implement the game to meet the Server module’s ex-
pectations. Note in particular that the way Server spawns a different thread for handling each car creates concurrency
issues for the Game module (and that the code we have provided you does nothing to account for concurrency).

6.3 Game

All the functions in the Game module referred to above are specified in game.mli. The function loadBoard is
implemented for you, and most of the other functions are left unimplemented. To help you get started, we have
provided an initial definition of the type game, and partial implementations of initGame, handleAction, and a
subfunction of handleAction to write a string to the GUI.

Your design may require you to add or modify the type declarations or functions we have provided.

6.4 State

We have also provided a partially specified but completely unimplemented State module. We have not specified the
state type. That is one of the major things you need to do. You do not need to keep any of the functions we specify;
they are just suggestions.

We strongly suggest that you have a State module in your final design, as the distinction between game rules and
game state is significant. In other words, you should NOT put all of your code in the Game module.

12

7 Running the game
7.1 Note for Mac/Linux Users

We have provided batch files to compile the game, GUI and cars. To make them work on a non-Windows system,
you just need to remove the “.exe” in the scripts. And to run them, run “sh build_script.bat” instead of just
“pbuild_script”.

7.2 Game Server

Run build_game to build the game server. The game server has five command line arguments:
1. The file name of the board file to use
2. The minimum number of cars desired for the race (1)
3. The maximum number of cars desired for the race (2)
4. The port number to listen on for the cars (10503)
5. The port number to listen on for the GUIs (10501)

The first argument is required, the other four are optional. The default values for the optional ones are in parentheses
above. You should not change the port numbers unless you have another program on your computer already using that
port (which you shouldn’t).

The server waits until the minimum number of cars joins the game. Then if the maximum number of cars is strictly
greater than the minimum number of cars, the server waits for up to cMAX_WAIT_CONNECTION_TIME seconds for the
maximum number of cars to join, then it starts the game.

7.3 GUI

The first time you run the GUI, you will have to run build_bmp.bat. This compiles all the files in the bmp directory.
You will only have to do that once. To build the GUI client, run build_gui.bat. The GUI will have to be rebuild if
the constants or type definitions change (most likely, we will have to change the constants to balance the game). The
GUI has the following command line arguments:

1. The IP address of the game server
2. The port number that the game server is listening on for GUI connections (10501)

The second argument is optional, with 10501 as the default value.

7.4 Car

Run build_bot to build the bot in the file bot/bot .m1. The provided bot has the following command line arguments:
1. The IP address of the game server
2. The port number that the game server is listening on for car connections (10503)

3. A boolean indicating whether the bot should move back towards the center of the track when it gets to far from
the center (true)

The second argument is optional, with 10503 as the default value. The third argument changes the functionality of the
bot. When you write your bots, you may consider doing this kind of thing to test if new strategies are better or not.

13

7.5 The Whole Game

In order to run the whole game on a local machine, follow the instructions in the above three sections, with 127.0.0.1
as the ip address, running multiple cars if desired. Note that with the initial code you are given, the server will
immediately shut down with a Failure exception due to unimplemented code.

8 Your tasks

There are several parts to the implementation of this project. Make sure you spend time thinking about each part before
starting. Start on this project early. There are many things you will have to take into consideration when designing the
code for each section.

8.1 Design meeting

Your first task is to create a design for your Steam Kart implementation and meet with the course staff to review it.
Each group will use CMS to sign up for a meeting, which will take place between November 17th and November 20th.
If you are unable to sign up for any of the available time slots on CMS, contact the course staff, and we will try to
accommodate you.

At the meeting, you will be expected to explain the design of your system, explain what data structures you will
use to implement the design, and hand in a printed copy of the signatures for each of the modules in your design.
You are also expected to explain your initial thoughts about strategies for your car. In designing module interfaces,
think about what functionality needs to go into each module, how the interfaces can be made as simple and narrow as
possible, and what information needs to be kept track of by each module. Everyone in the group should be prepared
to discuss the design and explain why the module signatures are the way they are. We will give you feedback on your
design.

8.2 Implementing the game

Your second task is to implement the Steam Kart game in the file game/game .m1, and any files you choose to add.
Note that you should add files only to the game and bot directories. You must implement the rules as described in
Section 2 and handling of actions as described in Section 3.4. You must also make sure that the actions units take
are rendered in the graphic display using the interface detailed in Section 5. You can use the sample car program we
provide to test your game, but for full testing coverage you will need to write your own tests.

8.3 Designing a bot

Your third task is to implement a bot to play the game. A very weak bot that you can use as a basis for your bot code
is provided.

There are many different strategies for building a good bot. This is your chance to be creative and have fun creating
a good AL

We will provide an online server running our implementation of the game that you will be able to connect to,
allowing you to see the game in action, test that your bot works correctly, and try your bot against other people’s
bots. We will also provide some staff bots to test against, at our discretion. Further information on the server will be
provided soon.

In the next couple weeks, we will release a guide to what your bot will need to be able to do, in the form “you need
to be able to complete this track in this amount of time, and be able to consistently beat these staff bots on the KOTH
server’. Stay posted here and on the newsgroup for more details as the due date approaches.

8.4 Documentation

Your final task is to submit a design overview document for this project. Since this project is both large and quite
open-ended regarding the way one may choose to implement it, documentation becomes even more important.

14

http://www.cs.cornell.edu/courses/cs3110/2009sp/hw/overview-requirements.html

Your design overview document should cover both your implementation of the game itself and the bot you created.
In discussing your bot, you should make note of what strategies you experimented with, and what you found to be
most effective.

8.5 Things to keep in mind

Here are some issues to keep in mind when designing and implementing the game:

¢ You need to make a good design. This project is both large and complicated; without spending time on making
a design that is both solid and complete, you will very quickly get bogged down when you go to implement
things. The importance of design cannot be overemphasized. Trying to write code before your have your design
is a recipe for disaster on a project of this magnitude.

Before writing any code, you should have a very clear idea of all of the following:

— What concurrency issues exist and how to deal with them

What information needs to be kept track of to fully represent the game

How that information will be stored and accessed efficiently

What the interface between your modules will be

What invariants will hold between your modules
— Which modules will enforce those invariants
e Think carefully about how to break up your program into loosely coupled modules. The program will be
complex and difficult to debug unless you can develop modules that encapsulate important aspects of the game.

Design the interfaces to these modules carefully so that you can work effectively with your partner and can do
unit testing of the modules as you implement.

e Make sure that what is going on in the game matches what is going on in the graphics. Updating one does
not automatically update the other. If you are watching the game and something seems to go wrong, remember,
it could just be the code controlling the output to the screen. Moreover, just because the graphics look correct
doesn’t mean the game is acting properly. It would behoove you to maintain some sort of invariant between the
status of the game and the status of the graphics.

e Problems in the game might actually be problems with the bots. If you are using your own bots to test the
actions and something seems wrong, the bots could just as easily be at fault.

e Implement and test the actions one at a time. Don’t try to implement all of the actions and test them with one
single bot. Start with easier actions and work up to the harder ones.

e Remember to finish the game in time to write a good bot. The bot part of the project is worth as much as
the game part, so don’t put off the bot part until the end. And unlike in past semesters, we WILL be grading it
based on how well it performs. It will be VERY hard to get 35/35 on this part.

8.6 Final submission

You will submit:

1. A zip file of all files in your ps6 directory, including those you did not edit. We should be able to unzip this and
run the build_game.bat script to compile your game code, and the build_bot.bat script to compile your bot
code (i.e., you should modify the scripts to include all necessary files). This should include:

e your game implementation

e your bot, named bot .m1 in the bot directory along with any files it needs to build and run

It is very important that you organize your files in this manner, as it greatly simplifies grading.

15

2. Your documentation file, in . pdf format.

Although you will submit the entire ps6 directory, you should only add new files to the game and bot folders; the
other folders should remain unchanged. If you add new .ml or .mli files, you should add them to the compilation
scripts. Note again that we expect to be able to unzip your submission and run the build_game.bat script in the newly
created directory to compile your code without errors or warnings. Submissions that do not meet this criterion will
lose points.

9 Tournament

On December 13, after the problem set is due, there will be a Steam Kart tournament which you are encouraged to
submit your bot programs to. There will be lots of free food, and the chance to watch your bot perform live. The
winner gets bragging rights and will have their name posted on the 312/3110 Tournament hall of fame.

10 Written Problem

In addition to the game and bot implementation tasks described above, this project also includes a written problem on
amortized complexity. This written question should be submitted to CMS, in .pdf format.

A sorted array (or vector) is an appealing data structure for storing ordered data, because it offers the same O (1g n)
lookup time as a balanced binary tree but has a compact representation and a good asymptotic constant factor. Unfor-
tunately it doesn’t support fast insertion.

Uberhacker Zoe Marti has an idea for a mutable ordered set abstraction that will be fast for small n. Instead of
storing all the elements in the sorted array, Zoe will maintain a separate short linked list of up to f(n) elements, where
f(n) is some function yet to be determined.

type set = {sorted: element array ref, recent: element list ref}

When the data structure is searched, both the list recent and the array sorted (of length n) are traversed. When
an element is added to the data structure, it is appended to the list in constant time. If the recent list becomes longer
than or equal to f(n) elements, the f(n) elements are sorted using mergesort and then merged in linear time with the
n elements, which are already in order.

1. What is the complexity of a single lookup on this data structure, expressed as a function of f(n) and n? To
achieve complexity O(lgn), as with a balanced binary tree, what should Zoe set f(n) to?

2. The goal with this structure was to make inserts cheaper. As a function of f(n) and n, what is the complexity
of f(n) inserts into this structure, starting from an empty recent list? (This should cause exactly one sort and
merge)

3. We can reduce both insert and lookup to an amortized complexity of O(y/n). Your goal is to prove this bound
using potential functions. Recall that the amortized complexity T4 of an operation changing structure s to s’ is
defined as the actual cost of operation T plus A® = &(s') — P(s).

Provide a ® and a definition of f, and use them to show that the complexity of one lookup is O(y/n) and
the amortized complexity of one insert is O(y/n). (Hint: Choose & carefully, keeping in mind that amortized
complexity is closely related to A®.)

16

http://www.cs.cornell.edu/andru/cs312/tournaments.html

	Introduction
	Reading this document
	Updates to Problem Set
	Point Breakdown

	Game Rules
	Board
	Track
	Road Types
	Item Box Rows
	Time Limit

	Winning
	Cars
	Initial Positioning
	Items
	Items Overview
	Item Details
	Item Terminology
	Item Boxes

	Movement
	Basic Physics
	Crashes
	Code Given

	Communication
	Client-Server Framework
	Communication as a client
	Control Messages
	Control Quick Reference

	Action Messages
	Action Quick Reference
	Action Specification

	Result Messages
	Result Quick Reference

	Boards
	GUI
	GUI Client
	Sending messages to the GUI
	Characters
	Graphics Commands

	Provided source code
	Code Structure
	Server
	Game
	State

	Running the game
	Note for Mac/Linux Users
	Game Server
	GUI
	Car
	The Whole Game

	Your tasks
	Design meeting
	Implementing the game
	Designing a bot
	Documentation
	Things to keep in mind
	Final submission

	Tournament
	Written Problem

