
CS2802: Discrete Structures - Honors

Welcome to the class!

So What’s “Discrete Structures” all about anyway?

I The following slides are largely taken from Sid Chaudhuri,
with thanks.
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Discrete Structures
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Continuous Structures
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• discrete: individually separate and distinct

• discreet

– careful and circumspect in one’s speech or actions, especially
in order to avoid causing o↵ense or to gain an advantage.

– intentionally unobtrusive.
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Things we can count with the integers
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Things we can count with the integers
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Prime Numbers

A number with exactly two divisors:
1 and itself

2, 3, 5, 7, 11, 13, 17...



Prime
Numbers
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Euclid's Proof of In/nitude of Primes

(~300BC)
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● Suppose there is a /nite number of primes
● Then there is a largest prime, p
● Consider n = (1 × 2 × 3 × ... × p) + 1

● n cannot be prime (p is the largest)
● Therefore it has a (prime) divisor < n

● But no number from 2 to p divides n
● So n has a prime divisor greater than p

Contradiction!!!    



Discrete Structures

● Number theory
● Proof systems
● Sets, functions, relations
● Counting and probability



Bridges of Königsberg

Braun & Hogenberg, “Civitates Orbis Terrarum”, Cologne 1585. Photoshopped to clean up right side and add 7th bridge.



Bridges of Königsberg

Is there a city tour that crosses
each bridge exactly once?

Braun & Hogenberg, “Civitates Orbis Terrarum”, Cologne 1585. Photoshopped to clean up right side and add 7th bridge.



Bridges of Königsberg

Leonhard Euler
(1707-1783)

Braun & Hogenberg, “Civitates Orbis Terrarum”, Cologne 1585. Photoshopped to clean up right side and add 7th bridge.
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Enter by new bridge,
Leave by new bridge

Braun & Hogenberg, “Civitates Orbis Terrarum”, Cologne 1585. Photoshopped to clean up right side and add 7th bridge.
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Odd # of bridges
to each landmass
⇒ no solution!

Braun & Hogenberg, “Civitates Orbis Terrarum”, Cologne 1585. Photoshopped to clean up right side and add 7th bridge.



Bridges of Königsberg

● Cross each bridge once: Euler Path
– Easy for a computer to calculate

● Visit each landmass once: Hamiltonian Path
– Probably very hard for a computer to calculate
– If you can /nd an eBcient solution, you will get $1M 
and undying fame (answers “P = NP?”)

– (Will also break modern crypto, collapse the banking 
system, revolutionize automated mathematics and 
science, bring about world peace...)



You'll also be terri/c at Minesweeper

baslerweb.com



Discrete Structures

● Number theory
● Proof systems
● Sets, functions, relations
● Counting and probability
● Graph theory
● Models of computation, automata, complexity
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Discrete Structures

● Number theory
● Proof systems
● Sets, functions, relations
● Counting and probability
● Graph theory
● Models of computation, automata, complexity
● Logic
● Decidability, computability



warrenphotographic.co.uk, auntiedogmasgardenspot.wordpress.com



CS 2802 vs. CS 2800
All of the above applies to both CS 2800 and CS 2802

I Both CS 2802 and CS 2800 cover essentially the same
material

So how do they di↵er?
I CS 2802 is an honors version of CS 2800. That means:

I It will cover material in more depth
I It will cover a few extra topics
I You will be expected to be able to read the text and absorb

some material on your own.
I There will be less time on straightforward exercises.

I Although both courses will courses will focus on writing proofs

I Most people will find the homework in CS 2802 harder

I The courses will stay in synch up to the end of the add period
(Feb. 4), to make it easy to transfer from CS 2802 to CS 2800

This is the second time that CS 2802 is being taught.
I It’s still a work in progress!
I Feedback and suggestions are welcome!
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Proofs

One running theme of the course:

I How to prove things

I How to write good proofs

That’s what we’ll be starting with.
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What’s a proof?

For our purposes, a proof is a chain of logical deductions, leading
to the proposition in question (i.e., the thing you want to prove)
from a base set of axioms (i.e., things you can assume without
proving them).

I We’ll later study axiomatic systems for deriving statements
written in a formal logic, but when we talk about writing
proofs in this course, we mean proofs that are largely English
sentences.

So what counts as a “legal” chain of logical deductions? How big
a step can you take?

I It’s largely in the eye of the beholder

I You need to convince the graders that you’ve understood
what’s going on and haven’t missed any essential details.

4 / 52



What’s a proof?

For our purposes, a proof is a chain of logical deductions, leading
to the proposition in question (i.e., the thing you want to prove)
from a base set of axioms (i.e., things you can assume without
proving them).

I We’ll later study axiomatic systems for deriving statements
written in a formal logic, but when we talk about writing
proofs in this course, we mean proofs that are largely English
sentences.

So what counts as a “legal” chain of logical deductions? How big
a step can you take?

I It’s largely in the eye of the beholder

I You need to convince the graders that you’ve understood
what’s going on and haven’t missed any essential details.

4 / 52



Proving Implications

There are standard techniques for proving things.
Suppose that we want to prove an implication of the form P ) Q

I Read this as “If P is true then Q is true”.

So you can assume P , and the prove Q using the fact that P is
true in your proof.
Structure of Proof:

Assume P
. . .
Therefore Q.
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Example: If n is odd, then so is n2.
How do we even start the proof?

I We need a formal definition of “odd”!

Proof: Assume that n is odd.
Since n is odd, n = 2m + 1 for some integer m.
Then n2 = 4m2 + 4m + 1 = 2(2m2 + 2m) + 1.
Therefore n2 has the form 2m0 + 1 (where m0 = 2m2 + 2m), and
must be odd.

The proof is trivial, but there are two key points:

I To prove the result carefully, you need a formal definition of
odd.

I It has the right “structure”.
I The marks the end of a proof.
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Proof by Contradiction:

Sometimes the best way to prove P ) Q is by contradiction:

I Show if Q is false, then P is also false (i.e., ¬Q ) ¬P).
I In general P ) Q is equivalent to ¬Q ) ¬P .

I ¬Q ) ¬P is called the contrapositive of P ) Q.

Example: If n2 is odd, then so is n.

Proof: Suppose that n2 is odd and (by way of contradiction) that
n is not odd. Then it must be even.

I Why? How would you prove this formally?

Thus, n = 2k for some k . This means that n2 = 4k2 = 2(2k2), so
n2 is even. - Contradiction

Therefore if n2 is odd, then so is n.
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Theorem:
p
2 is irrational.

Proof: By contradiction. Suppose that
p
2 is rational. Thenp

2 = a/b for some a, b 2 IN+. We can assume that a/b is in
lowest terms.

I Therefore, a and b can’t both be even.

Squaring both sides, we get

2 = a2/b2

Thus, a2 = 2b2, so a2 is even. This means that a must be even.

I Why? What does this follow from?

That means that a = 2c for some integer c . Then a2 = 4c2.

Thus, 4c2 = 2b2, so b2 = 2c2. This means that b2 is even, and
hence so is b.

Contradiction!

Thus,
p
2 must be irrational.
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Proving i↵ (if and only if)

Sometimes you want to prove P , Q. This is equivalent to
(P ) Q) ^ (Q ) P).

I One approach: prove P ) Q and Q ) P separately, as
discussed above.

I Another approach: construct a chain of i↵s:

P
i↵ P1

. . .
i↵ Pn

i↵ Q

See example in text.

Make sure you put in the i↵s! Don’t just write down a sequence of
formulas without words between them.

I This is guaranteed to be an unacceptable proof!
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Proof by cases

Splitting up a complex argument into cases can be a good strategy

Example: Show that every integer that is a perfect cube (i.e., has
the form n3) is either a multiple of 9, 1 more than a multiple of 9,
or 1 less than a multiple of 9.

Every number n is either a multiple of 3, 1 more than a multiple of
3, or 2 more than a multiple of 3, which means it’s 1 less than a
multiple of 3 (3p + 2 = 3(p + 1)� 1).

I Consider each case separately.
I What’s the form of n3 if n = 3p, n = 3p + 1, and n = 3p � 1,

respectively

10 / 52



Proof by cases

Splitting up a complex argument into cases can be a good strategy

Example: Show that every integer that is a perfect cube (i.e., has
the form n3) is either a multiple of 9, 1 more than a multiple of 9,
or 1 less than a multiple of 9.
Every number n is either a multiple of 3, 1 more than a multiple of
3, or 2 more than a multiple of 3, which means it’s 1 less than a
multiple of 3 (3p + 2 = 3(p + 1)� 1).

I Consider each case separately.
I What’s the form of n3 if n = 3p, n = 3p + 1, and n = 3p � 1,

respectively

10 / 52



Soon we’ll get to a proof method that plays a major role in this
course:

I Induction

But first we’ll briefly cover a few other topics that are

(a) important and

(b) give us practice in writing proofs.

I propositional logic

I sets

I relations

I graphs

I functions
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Propositional Logic (A Very Brief Review)

I will assume that you’ve all seen propositional logic before.
I Whether or not you have, you should read Sections 3.1-3.5 in

MCS
I Section 3.6 talks about first-order (or predicate) logic; we’ll

talk more about that later in the course

I’ll hit some highlights in the next few slides . . .
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Propositional Logic: Syntax
The syntax of propositional logic tells us what formulas are legal:

I We with primitive propositions, basic statements like
I It is now brillig
I This thing is mimsy
I It’s raining in San Francisco
I 4 is even

I We then form more complicated compound propositions using
connectives like:

I ¬: not
I ^: and
I _: or
I ): implies
I ,: equivalent (if and only if)

Technically, we define more complicated formulas by induction.

MCS uses English connectives (NOT, AND, OR, IMPLIES, IFF).

I I have no idea why!

I’ll stick to the standard mathematical notation.
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Propositional Logic: Semantics
Semantics tells you when a formula is true.

I I’ll assume you how to define the truth value of compound
propositions given the truth value of primitive propositions,
using truth tables.

I want to focus on the truth table for ):

P Q P ) Q
T T T
T F F
F T ?
F F ?

What should the truth value of P ) Q be when P is false?

P Q P ) Q
T T T
T F F
F T T
F F T

I We take P ) Q to be true if P is false.
I This definition gives what is called material implication

Why is this reasonable?
I This choice is mathematically convenient
I As long as Q is true when P is true, then P ) Q will be true

no matter what.
I It justifies what we did before: Assume P is true, then prove Q.
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Problems with Material Implication

Although material implication is what we’ll use in this course, it
has some possibly unintended consequences.

I (elephants are pink ) the moon is made of green cheese) _
(the moon is made of green cheese ) elephants are pink) is
valid

Perhaps a more serious problem: false formulas imply everything.

Suppose that we have a big database, and we want to query it.

I We want the database to return true to a query ' if the
conjunction of facts in the database imply '.

I But large databases almost surely have some inconsistency
somewhere.

I Just because a database has some inconsistency somewhere,
we don’t want to conclude that you are a student at Cornell,
and a student at Harvard, and a student at North Dakota
state!
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Alternatives to Material Implication

Logicians have considered a number of di↵erent propositional
logics, each with di↵erent notions of implication.

I classical (propositional) logic uses material implication.

But there are other propositional logics, including:
I conditional logic, which uses conditional (or counterfactual)

implication
I if the match were dry then it would light

I intuitionistic logic
I p _ ¬p is not necessarily valid in intuitionistic logic
I roughly speaking, p is valid in intuitionistic logic only if it has

a constructive proof

I relevance logic, which uses relevant implication: p ) q is true
only if q is true whenever p is, and p is “relevant” to q

I in relevance logic, p ^¬p does not imply q, although it does in
classical logic.

I This deals with the database problem
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Validity, Satisfiability, and Equivalence

I A formula ' is valid (also known as a tautology) if every truth
assignment makes ' true.

I ' is satisfiable if some truth assignment makes ' true.

I Two formulas ' and  are equivalent if exactly the same
truth assignments make both ' and  true.

I Lemma: ' and  are equivalent i↵ ',  is valid.
I This will be homework

Examples:

I ')  is equivalent to ¬' _  
I ')  is equivalent to ¬ ) ¬'.

I This justifies proof by contradiction
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First-Order Logic: Syntax

First-order (or predicate) logic extends propositional logic with
I Quantification: 8nP(n), 9xP(x).

I The quantifier ranges over some domain

I Predicates that take arguments:
I A unary predicate takes one argument

I Tall(Alice): Tall is a unary predicate

I A binary predicate takes two argument:
I Loves(Alice,Bob)

I In general, we can have k-ary predicates

I Function symbols that take arguments (just like predicates):
+(2, 3) = 5

I Constant symbols: Alice, Bob
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How do we prove for 8xP(x): i.e., that P(x) is true for all values
of x .

I Here P is a statement (often in English) that mentions x):

I E.g., 8x(x2 � x)

I Whether 8xP(x) is true depends on what x ranges over (the
domain)

I 8x(x2 � x) is false if x ranges over the real numbers.
I (1/2)2 < 1/2

I It’s true if x ranges over the integers.

I To prove it, we consider an arbitrary integer x , and show that
x2 � x for that x .

I How do we do that?

I Consider two cases: x � 1 and x  0.
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I To prove it, we consider an arbitrary integer x , and show that
x2 � x for that x .

I How do we do that?

I Consider two cases: x � 1 and x  0.

How do we show that 8xP(x) is false?
I Find a counterexample!

I E.g., to show that 8x(x2 � x) is false when x ranges over the
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Sets

I’m going to assume that you are familiar with with sets, set
builder notation, and basic operations on sets

I [ (union)

I \ (intersection)

I ¯ (complementation)

You should read Section 4.1 in the text to review this material!

21 / 52



Sets and Propositions
There’s a close connection between set operations and
propositional connectives:

I [ and _
I \ and ^
I ¯ and ¬

What’s the formal connection?

I The set of truth assignments that make ' _  true is the
union of the set of truth assignments that make ' true and
the set that make  true.

I The set of truth assignments that make ' ^  true is the
intersection of the set of truth assignments that make ' true
and the set that make  true.

I The set of truth assignments that make ¬' true is the
complement of the set that make ' true.

There’s also a connection between ) and ✓.
I ')  is valid i↵ the set of truth assignments that make '

true is a subset of the set that makes  true. (For homework.)
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Proving Set Equality

One way to prove that A = B (where A and B are sets).
I Prove that A and B have the same elements; that is

I prove x 2 A i↵ x 2 B .

This may involve proving A ✓ B and B ✓ A.
I This is an analogous to proving P , Q by proving P ) Q and

Q ) P .

Similarly, to prove that A ✓ B ,
I prove that x 2 A implies x 2 B .
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Sets vs. Sequences

We denote a sequence of objects as (a, b, c)

I the order matters: (a, b, c) 6= (c , b, a)

I elements can be repeated: (a, b, a) is a legitimate sequence of
length 3.

I By way of contrast, with sets, order doesn’t matter
I {a, b, c} = {c , b, a}

and we can’t repeat elements
I We don’t write {a, b, a} or {a, a, b}; we would just write

{a, b}.
I However, there is a notion of multiset where elements are

repeated and the multiplicity matters

I {{a, a, b}} is a meaningful multiset
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Relations
I Cartesian product:

S ⇥ T = {(s, t) : s 2 S , t 2 T}
I {1, 2, 3}⇥ {3, 4} =

{(1, 3), (2, 3), (3, 3), (1, 4), (2, 4), (3, 4)}
I |S ⇥ T | = |S |⇥ |T |.

I A relation on S and T (or, on S ⇥ T ) is a subset of S ⇥ T
I A relation on S is a subset of S ⇥ S

I Taller than is a relation on people: (Joe,Sam) is in the Taller
than relation if Joe is Taller than Sam

I Greater than is a relation on IR (the real numbers):

L = {(x , y) : x , y 2 R , x > y}

I Divisibility is a relation on IN (the natural numbers):

D = {(x , y) : x , y 2 IN, x |y}

Notation: the book writes a R b to denote that the pair (a, b) 2 R .
The latter notation is more standard, and that’s what I will use.

I You can use either one.
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Various Properties of Relations
I A relation R on S is reflexive if (x , x) 2 R for all x 2 S .

I  is reflexive; < is not

I A relation R on S is irreflexive if (x , x) /2 R for all x 2 S .
I < is irreflexive;  is not

I A relation R on S is symmetric if (x , y) 2 R implies
(y , x) 2 R .

I “sibling-of” is symmetric (what about “sister of”)
I  is not symmetric

I A relation R on S is asymmetric if (x , y) 2 R implies
(y , x) /2 R .

I < and > are asymmetric
I  and � are not

I A relation R on S is antisymmetric if (x , y) 2 R and x 6= y
implies (y , x) /2 R .

I  and � are antisymmetric
I A relation R on S is transitive if (x , y) 2 R and (y , z) 2 R

implies (x , z) 2 R .
I , <, �, > are all transitive;
I “parent-of” is not transitive; “ancestor-of” is
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Equivalence Relations

I A relation R is an equivalence relation if it is reflexive,
symmetric, and transitive

I = is an equivalence relation
I Parity is an equivalence relation on IN;

(x , y) 2 Parity if x � y is even

An equivalence relation on S partitions S into equivalence classes:
I The equivalence class of s is denoted [s].

I [s] = {t : (s, t) 2 R}
Theorem: Equivalences classes are either equal or disjoint: for all
s, s 0 2 S , either [s] = [s 0] or [s] \ [t] = ;.

I What are the equivalence classes of the parity relation?
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Transitive Closure
The transitive closure of a relation R is the least relation R⇤ such
that

1. R ✓ R⇤

2. R⇤ is transitive (so that if (u, v), (v ,w) 2 R⇤, then so is
(u,w)).

How do we know that there is a least relation R⇤ with these
properties:

I “least” means that R⇤ must be a subset of any other relation
with these properties;

I that is, if there is a relation R 0 such that that R ✓ R 0 and R 0

is transitive, then R⇤ ✓ R 0.

Take R⇤ to be the intersection of all the transitive relations that
contain R .

I We must check that the intersection contains R and is
transitive.

Clearly R⇤ is a subset of any transtive relation R 0 that contains R .
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Example: Suppose R = {(1, 2), (2, 3), (1, 4)}.
I R⇤ = {(1, 2), (1, 3), (2, 3), (1, 4)}
I we need to add (1, 3), because (1, 2), (2, 3) 2 R

Note that we don’t need to add (2,4).

I If (2,1), (1,4) were in R , then we’d need (2,4)

I (1,2), (1,4) doesn’t force us to add anything (it doesn’t fit the
“pattern” of transitivity.

Note that if R is already transitive, then R⇤ = R .
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Composing and Inverting Relations

If R is a relation on A⇥ B , then R�1 is a relation on B ⇥ A:

(a, b) 2 R i↵ (b, a) 2 R�1.

If R is a relation on B ⇥ C and S is a relation on A⇥ B , then
R � S is a relation on A⇥ C :

(a, c) 2 R � S i↵ 9b((a, b) 2 S and (b, c) 2 R .

I Note the order of R and S on the right-hand side

I This is not a typo!

Example: If R = {(n, n + 1) : n 2 IN}, then what’s R � R?
I R � R = {(n, n + 2) : n 2 IN}.
I How do you prove this?
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Recall that R = {(n, n + 1) : n 2 IN}. Let
S = {(n, n + 2) : n 2 IN}. We want to show R � R = S . One way
to show that A = B is to show that A ✓ B and B ✓ A. That’s
what I’ll do:

I Suppose that x 2 S . Then x = (n, n + 2) for some n.

I Note that (n, n + 1) 2 R and (n + 1, n + 2) 2 R .

I Thus, by definition (n, n + 2) 2 R � R ; that is, x 2 R � R .

This shows that S ✓ R � R .

The other direction works essentially the same way:

I Suppose that (a, c) 2 R � R .
I Then (by definition), there is a b such that (a, b) 2 R and

(b, c) 2 R .

I Thus, b = a+ 1 and c = b + 1 = a+ 2.

I Thus (a, c) = (a, a+ 2) 2 S .

This shows that R � R ✓ S .
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Graphs

A graph consists of nodes and edges between nodes.

A directed graph (digraph) is one where the edges have a
direction, usually denoted with an arrow.
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Graphs come up everywhere.

I We can view the internet as a graph (in many ways)
I who is connected to whom

I Web search views web pages as a graph
I who points to whom

I Niche graphs (Ecology):
I The vertices are species
I Two vertices are connected by an edge if they compete (use

the same food resources, etc.)

Niche graphs give a visual representation of competitiveness.
I Influence Graphs

I The vertices are people
I There is an edge from a to b if a influences b

Influence graphs give a visual representation of power
structure.

There are lots of other examples in all fields . . .
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Terminology and Notation
An undirected graph G is a pair (V ,E ), where V is a set of
vertices or nodes and E is a set of edges or branches; an edge is a
set {v , v 0} of two not necessarily distinct vertices (i.e., v , v 0 2 V ).

I We sometimes write G (V ,E ) instead of G
I We sometimes write V (G ) and E (G ) if we want to emphasize

the graph that the vertices and edges come from.

A digraph is a pair (V ,E ) where E is a set of directed edges
I A directed edge is a pair (v , v 0), where v , v 0 2 G
I The order matters!
I A walk in a graph G is an alternating sequence of vertices and

edges, starting and ending with a vertex, where, for every
edge (u, v) on the walk, u is the preceding vertex and v is the
following vertex.

I E.g., 1 (1,3), 3, (3,8), 8
I Yuck! (The vertices are redundant)

I It’s more standard to leave them out; the text includes them

I A path is a walk where all the vertices are di↵erent
I A cycle is a walk where all vertices are distinct except for the

first and last one
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I A walk in a graph G is an alternating sequence of vertices and

edges, starting and ending with a vertex, where, for every
edge (u, v) on the walk, u is the preceding vertex and v is the
following vertex.

I E.g., 1 (1,3), 3, (3,8), 8
I Yuck! (The vertices are redundant)

I It’s more standard to leave them out; the text includes them

I A path is a walk where all the vertices are di↵erent
I A cycle is a walk where all vertices are distinct except for the

first and last one
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Graphs and Relations
Given a relation R on S ⇥ T , we can represent it by the directed
graph G (V ,E ), where

I V = S [ T and

I E = {(s, t) : (s, t) 2 R}
Example: We can represent the < relation on {0, 1, 2, 3, 4}
graphically.

0 1 2 3 4

How does the graphical representation show that a graph is

I reflexive?

I symmetric?

I transitive?
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Partial Orders

A relation is strict partial order if it is irreflexive and transitive.

I < and > are strict partial orders

A relation is weak partial order if it is reflexive, transitive, and
antisymmetric

I  and � are weak partial orders
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Functions

We think of a function f : S ! T as providing a mapping from S
to T . But . . .

Formally, a function is a relation R on S ⇥ T such that for each
s 2 S , there is a unique t 2 T such that (s, t) 2 R .

If f : S ! T , then S is the domain of f , T is the codomain;
{y : f (x) = y for some x 2 S} is the range or image.

Notation: ST denotes the set of functions with domain T and
range S .

I There’s a reason that we use this “exponent” notation.

I We’ll soon show that |ST | = |S ||T |
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We often think of a function as being characterized by an algebraic
formula

I y = 3x � 2 characterizes f (x) = 3x � 2.

It ain’t necessarily so.
I Some formulas don’t characterize functions:

I x2 + y2 = 1 defines a circle; no unique y for each x

I Some functions can’t be characterized by algebraic formulas

I f (n) =

⇢
0 if n is even
1 if n is odd
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Function Terminology

Suppose f : S ! T
I f is onto (or surjective) if, for each t 2 T , there is some

s 2 S such that f (s) = t.
I if f : R+ ! R+, f (x) = x2, then f is onto
I if f : R ! R , f (x) = x2, then f is not onto

I f is one-to-one (1-1, injective) if it is not the case that s 6= s 0

and f (s) = f (s 0).
I if f : R+ ! R+, f (x) = x2, then f is 1-1
I if f : R ! R , f (x) = x2, then f is not 1-1.

I a function is bijective if it is 1-1 and onto.
I if f : R+ ! R+, f (x) = x2, then f is bijective
I if f : R ! R , f (x) = x2, then f is not bijective.
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Inverse Functions
If f : S ! T , then f is invertible if there exists a function
g : T ! S such that

f (s) = t i↵ g(t) = s.

I If f is invertible, then g is called the inverse of f
I We usually denote the inverse of f as f �1

I If f is invertible, then
I for all s 2 S , (f �1 � f )(s) = s
I for all t 2 T , (f � f �1)(t) = t

I If (g � f )(s) = s for all s 2 S , then g is a left inverse of f
I If (f � g)(t) = t for all t 2 T , then g is a right inverse of f

I Theorem: f is injective i↵ it has a left inverse.
I Theorem: f is surjective i↵ it has a right inverse.
I Theorem: f is a bijection i↵ it is invertible.

If f is not invertible, we still often abuse notation and view f �1 as
a relation, taking

f �1(s) = {t : f (s) = t}.
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Cardinality

The cardinality of a finite set S , denoted |S |, is the number of
element in S :

I |{1, 2, 7}| = 3

Theorem: If S and T are finite sets then:

(a) There is an injection from S to T i↵ |S |  |T |;
(b) There is a surjection from S to T i↵ |S | � |T |;
(c) There is a bijection from S to T i↵ |S | = |T |.
For these proofs, it is convenient that we can count the elements
of a finite set and list them in the order that we count them.
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Cardinality of Infinite Sets
What about infinite sets?

I How does the number of natural numbers compare to the
number of even numbers?
(a) more
(b) less
(c) the same

I Natural numbers vs. integers?
(a) more
(b) less
(c) the same

I Natural numbers vs. rational numbers?
(a) more
(b) less
(c) the same

I Rational numbers vs. irrational numbers?
(a) more
(b) less
(c) the same
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To answer these questions, we need some way to compare the sizes
of infinite sets.

Idea: (Georg Cantor) use the characterization for finite sets as the
definition:
Definition: |S |  |T | if there is an injection from S to T

I For homework: there is an injection from S to T i↵ there is a
surjection from T to S .

|S | = |T | if there is a bijection from S to T .
I S and T have the same cardinality if you can match up their

elements
For this to be reasonable, we would expect that if |S |  |T | and
|T |  |S |, then |S | = |T |.

I That is, if there’s an injection from S to T and an injection
from T to S , then there’s a bijection from S to T .

I This is true, but it’s not obvious!

Theorem: [Schröder-Bernstein] If |S |  |T | and |T |  |S | i↵
|S | = |T |.
Proof coming soon.
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Countable sets
Definition: If there is a bijection between IN and S , then S is
countable.

I The formal definition of countable is that a set S is countable
i↵ there’s an injection from S to IN. That means that finite
sets are also countable.

I After all, you can count them.
I If there’s a bijection from S to IN, then S is countably infinite.

I A bijection f : IN ! S tells you how to count the elements of
S .

I f (1) is the first element of S , f (2) is the second element, . . .

Theorem: The following sets are countable:

I The even numbers

I The multiples of three

I The integers

I IN ⇥ IN

I The rational numbers
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Diagonalization

So are all infinite sets countable?
Theorem: [Cantor] For all sets S , |P(S)| > |S |.

I Recall: P(S), the power set of S , consists of all subsets of S
I P(S) is sometimes denoted 2S , for reasons that will become

clearer when we do combinatorics.
I The text writes pos(S) (which is quite nonstandard!)

Proof: There’s an injection from S to P(S):

I s ! {s}
Now we have to show that there is no surjection from S to P(S).
How are we going to do that?

I It’s not enough to show that any specific function is not a
surjection.

I We have to show that there are no surjections.
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We do a proof by contradiction. Suppose that f : S ! P(S). I will
show that f is not a surjection by constructing a set A such that
f (s) 6= A for all s 2 S .
Here’s how A is defined:

I s 2 A i↵ s /2 f (s).

Suppose that there is some s0 such that f (s0) = A.
Is s0 2 A?

I If s0 2 A, then s0 2 f (s0) (because f (s0) = A), but then
s0 /2 A (by definition of A) - contradiction!

I If s0 /2 A, then s0 /2 f (s0), so s0 2 A!

Bottom line: s0 2 A i↵ s0 /2 A - contradiction!
Conclusion: There is no s0 such that f (s0) = A. So there is no
surjection from S to P(S).
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Why is this called a diagonalization? Consider the special case
where S = IN:

I We can construct a matrix of 0s and 1s, where the ijth entry
is 1 i↵ j 2 f (i).

I We can then construct a new set by flipping the elements of
the diagonal: A = {i : i /2 f (i)}.

I (This should make more sense when I discuss it in class and
draw a picture.)
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IR is uncountable
Theorem: IR is uncountable.

Proof: I’ll show that [0, 1) = {x 2 IR : 0  x < 1} is uncountable.

Recall that a real number between 0 and 1 can be written as an
infinite decimal:

0.x0x1x2 . . .

Suppose, by way of contradiction, that f : IN ! [0, 1) is a
surjection. I’ll construct x 2 [0, 1) that’s not in the range of f .
Define x = .x0x1x2 . . . as follows:

I To compute xk , we consider f (k).
I f (k) 2 [0, 1), so f (k) = .y0y1y2 . . .
I If yk = 0, then xk = 1; if yk 6= 0, then xk = 0.
I Bottom line: xk 6= yk .

Claim: x = .x0x1x2 . . . is not in the range of f .
I The kth digit of x di↵ers from the kth digit of f (k), so

x 6= f (k).

I E.g., x 6= f (7), because if f (7) = .y0y1..., then x7 6= y7.
Thus, |IN| < |IR |.

48 / 52



IR is uncountable
Theorem: IR is uncountable.

Proof: I’ll show that [0, 1) = {x 2 IR : 0  x < 1} is uncountable.

Recall that a real number between 0 and 1 can be written as an
infinite decimal:

0.x0x1x2 . . .

Suppose, by way of contradiction, that f : IN ! [0, 1) is a
surjection. I’ll construct x 2 [0, 1) that’s not in the range of f .
Define x = .x0x1x2 . . . as follows:

I To compute xk , we consider f (k).
I f (k) 2 [0, 1), so f (k) = .y0y1y2 . . .
I If yk = 0, then xk = 1; if yk 6= 0, then xk = 0.
I Bottom line: xk 6= yk .

Claim: x = .x0x1x2 . . . is not in the range of f .
I The kth digit of x di↵ers from the kth digit of f (k), so

x 6= f (k).
I E.g., x 6= f (7), because if f (7) = .y0y1..., then x7 6= y7.

Thus, |IN| < |IR |.
48 / 52



Proof of Schröder-Bernstein

Theorem: [Schröder-Bernstein] If |S |  |T | and |T |  |S | i↵
|S | = |T |.

I In words: There is an injection from S to T and an injection
from T to S i↵ there is a bijection from S to T .

Proof: Clearly if |S | = |T | then |S |  |T | and |T |  |S |. If f is a
bijection from S to T , then there is an injection from S to T (f
itself) and an injection from T to S :

f �1.

Now the hard part: Suppose that there is an injection f : S ! T
and an injection g : T ! S . We want to construct a bijection
h : S ! T .

For simplicity, assume that S and T are disjoint (S \ T = ;).
I Can always rename the elements of T to ensure this.

I Renaming is a bijection
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Consider chains of elements alternating between elements of S and
elements of G , where if s 2 S is on the chain and t 2 T is the next
element, then f (s) = t; if u is the element after t, then g(t) = u.

· · · g! s
f! t

g! s 0 · · ·

Because f and g are injections, there’s a unique way to extend
these chains both forwards and backwards as much as possible.
Claim 1: There are four possibilities for the chain:

I It is infinite in both the forward and backward directions
I It is a loop
I It is infinite in the forward direction and starts with an

element of S
I It is infinite in the forward direction and starts with an

element of T

Claim 2: The chains partition the elements of S [ T :
I The chains are disjoint
I Every element is on some chain.
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We can define a bijection h : S ! T by defining it on each chain
individually:

I For every chain except the last type, define h = f

I For the last type, define h = g�1.

This gives a bijection!
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The Continuum Hypothesis

It’s not hard to show that IN is the smallest infinite set

I For all infinite sets A, there is an injection from IN to A

We know that |IN| < |P(IN)| = |IR |.
I Is there an infinite set X whose cardinality is between that of

IN and IR?
I Cantor conjectured that there wasn’t.

I This conjecture became known as the continuum hypothesis.

I You can’t prove or disprove the continuum hypothesis using
the standard axioms of mathematics.

I That fact has been proved.
I It follows from work of Kurt Gödel and Paul Cohen

52 / 52



The Continuum Hypothesis

It’s not hard to show that IN is the smallest infinite set

I For all infinite sets A, there is an injection from IN to A

We know that |IN| < |P(IN)| = |IR |.
I Is there an infinite set X whose cardinality is between that of

IN and IR?
I Cantor conjectured that there wasn’t.

I This conjecture became known as the continuum hypothesis.

I You can’t prove or disprove the continuum hypothesis using
the standard axioms of mathematics.

I That fact has been proved.
I It follows from work of Kurt Gödel and Paul Cohen
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