Patterns and Finite Automata

A pattern is a set of objects with a recognizable property.

- ► In computer science, we're typically interested in patterns that are sequences of character strings
 - ▶ I think "Halpern" a very interesting pattern
 - ▶ I may want to find all occurrences of that pattern in a paper
- Other patterns:
 - ▶ if followed by any string of characters followed by then
 - all filenames ending with ".doc"

Pattern matching comes up all the time in text search.

A *finite automaton* is a particularly simple computing device that can recognize certain types of patterns, called *regular languages*

► The text does not cover finite automata; there is a separate handout on CMS.

Finite Automata

A *finite automaton* is a machine that is always in one of a finite number of states.

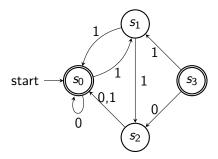
- When it gets some input, it moves from one state to another
 - ► If I'm in a "sad" state and someone hugs me, I move to a "happy" state
 - If I'm in a "happy" state and someone yells at me, I move to a "sad" state
- Example: A digital watch with "buttons" on the side for changing the time and date, or switching it to "stopwatch" mode, is an automaton
 - What are the states and inputs of this automaton?
- ▶ A certain state is denoted the *start* state
 - ► That's how the automaton starts life
- Other states are denoted final state
 - ▶ The automaton stops when it reaches a final state
 - ► (A digital watch has no final state, unless we count running out of battery power.)

Representing Finite Automata Graphically

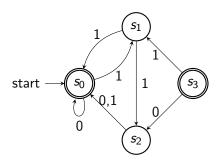
A finite automaton can be represented by a labeled directed graph.

- ▶ The nodes represent the states of the machine
- ► The edges are labeled by inputs, and describe how the machine transitions from one state to another

Example:



- ▶ There are four states: s_0, s_1, s_2, s_3
 - s_0 is the start state (denote by "start \rightarrow ", by convention)
 - $ightharpoonup s_0$ and s_3 are the final states (denoted by double circles, by convention)
- ▶ The labeled edges describe the transitions for each input
 - ▶ The inputs are either 0 or 1
 - ▶ in state s_0 and reads 0, it stays in s_0
 - ▶ If the machine is in state s_0 and reads 1, it moves to s_1
 - ▶ If the machine is in state s_1 and reads 0, it moves to s_1
 - ▶ If the machine is in state s_1 and reads 1, it moves to s_2



What happens on input 00000? 0101010? 010101? 11?

- ▶ Some strings move the automaton to a final state; some don't.
- ▶ The strings that take it to a final state are *accepted*.

A Parity-Checking Automaton

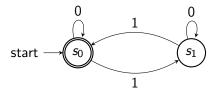
Here's an automaton that accepts strings of 0s and 1s that have even parity (an even number of 1s).

We need two states:

- \triangleright s_0 : we've seen an even number of 1s so far
- ▶ s₁: we've seen an odd number of 1s so far

The transition function is easy:

- If you see a 0, stay where you are; the number of 1s hasn't changed
- ▶ If you see a 1, move from s_0 to s_1 , and from s_1 to s_0

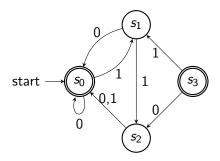


Finite Automata: Formal Definition

A (deterministic) finite automaton is a tuple $M = (S, I, f, s_0, F)$:

- ► *S* is a finite set of states;
- ▶ *I* is a finite input alphabet (e.g. $\{0,1\}$, $\{a,\ldots,z\}$)
- ▶ f is a transition function; $f: S \times I \rightarrow S$
 - ▶ f describes what the next state is if the machine is in state s and sees input $i \in I$.
- $ightharpoonup s_0 \in S$ is the initial state;
- ▶ $F \subseteq S$ is the set of final states.

Example:



- $S = \{s_0, s_1, s_2, s_3\}$
- $I = \{0, 1\}$
- $F = \{s_0, s_3\}$
- ▶ The transition function *f* is described by the graph;
 - $f(s_0,0) = s_0$; $f(s_0,1) = s_1$; $f(s_1,0) = s_0$; ...

You should be able to translate back and forth between finite automata and the graphs that describe them.

Describing Languages

The *language* accepted (or *recognized*) by an automaton is the set of strings that it accepts.

A language is a set of strings

We need tools for describing languages.

- If A and B are sets of strings, then AB, the concatenation of A and B, is the set of all strings ab such that a ∈ A and b ∈ B.
 - **Example:** If $A = \{0, 11\}$, $B = \{111, 00\}$, then
 - \triangleright $AB = \{0111, 000, 11111, 1100\}$
 - $BA = \{1110, 11111, 000, 0011\}$
- ▶ Define A^{n+1} inductively:
 - $A^0 = \{\lambda\}$: λ is the empty string
 - ► $A^1 = A$
 - $A^{n+1} = AA^n$
- $A^* = \cup_{n=0}^{\infty} A^n.$

Describing Languages

The *language* accepted (or *recognized*) by an automaton is the set of strings that it accepts.

► A *language* is a set of strings

We need tools for describing languages.

- If A and B are sets of strings, then AB, the concatenation of A and B, is the set of all strings ab such that a ∈ A and b ∈ B.
 - **Example:** If $A = \{0, 11\}$, $B = \{111, 00\}$, then
 - \triangleright $AB = \{0111, 000, 11111, 1100\}$
 - $BA = \{1110, 11111, 000, 0011\}$
- ▶ Define A^{n+1} inductively:
 - $A^0 = \{\lambda\}$: λ is the empty string
 - $A^1 = A$
 - $A^{n+1} = AA^n$
- $A^* = \cup_{n=0}^{\infty} A^n.$
 - ▶ What's $\{0,1\}^n$? $\{0,1\}^*$? $\{11\}^*$?

Regular Expressions

A regular expression is an algebraic way of defining a pattern **Definition:** The set of regular expressions over I (where I is an input set) is the smallest set S of expressions such that:

- ▶ the symbol $\emptyset \in S$ (that should be a boldface \emptyset)
- ▶ the symbol $\lambda \in S$ (that should be a boldface λ)
- ▶ the symbol $\mathbf{x} \in S$ is a regular expression if $x \in I$;
- ▶ if E_1 and E_2 are in S, then so are (E_1E_2) , $(E_1 \cup E_2)$ and E_1^* .

That is, we start with the empty set, λ , and elements of I, then close off under union, concatenation, and *.

- ▶ A regular set is a *syntactic* object: a sequence of symbols.
- Concatenation, union, and * are overloaded; they're used for both languages (sets of strings) and regular expressions (sequences of symbols)
- ► The parens are used for disambiguation $(((\mathbf{ab}) \cup \mathbf{c}) \neq (\mathbf{a}(\mathbf{b} \cup \mathbf{c}))$
- ▶ There is an equivalent inductive definition (see homework).

Those of you familiar with the programming language Perl or Unix searches should recognize the syntax

Each regular expression **E** over I defines a subset of I^* , denoted L(E) (the *language* of E) in the obvious way:

- $ightharpoonup L(\emptyset) = \emptyset;$
 - $\blacktriangleright L(\lambda) = \{\lambda\};$
 - ▶ $L(\mathbf{x}) = \{x\};$
- $L(\mathsf{E}_1\mathsf{E}_2) = L(\mathsf{E}_1)L(\mathsf{E}_2);$
- $L(\mathsf{E}_1 \cup \mathsf{E}_2) = L(\mathsf{E}_1) \cup L(\mathsf{E}_2);$
- ► $L(\mathbf{E}^*) = L(E)^*$.

Examples:

- What's L(0*10*10*)?
- ► What's $L((0*10*10*)^n)$? L(0*(0*10*10*)*)?
- ► $L(0^*(0^*10^*10^*)^*)$ is the language accepted by the parity automaton!
- ▶ If $\Sigma = \{a, ..., z, A, ..., Z, 0, ..., 9\} \cup Punctuation$, what is $\Sigma^*\{H\}\{a\}\{I\}\{p\}\{e\}\{r\}\{n\}\Sigma^*$?
 - ► *Punctuation* consists of the punctuation symbols (comma, period, space, etc.)
 - Σ is the input alphabet
 - Note that $L(\mathbf{\Sigma}^* \mathbf{Halpern} \mathbf{\Sigma}^*) = \mathbf{\Sigma}^* \{H\} \{a\} \{I\} \{p\} \{e\} \{r\} \{n\} \mathbf{\Sigma}^*.$

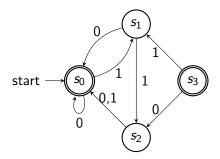
Can you define an automaton that accepts exactly the strings in $\Sigma^* Halpern \Sigma^*$?

► How many states would you need?

Can you define an automaton that accepts exactly the strings in $\Sigma^* Halpern\Sigma^*$?

► How many states would you need?

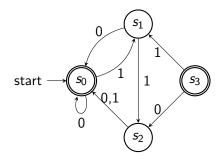
What language is represented by the automaton in the original example:



Can you define an automaton that accepts exactly the strings in $\Sigma^* Halpern\Sigma^*$?

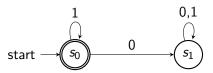
► How many states would you need?

What language is represented by the automaton in the original example:

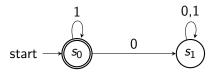


- $((10)*0*((110) \cup (111))*)*$
- ▶ Perhaps clearer: $((0 \cup 1)^*0 \cup 111)^*$
- It's not easy to prove this formally!

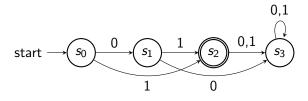
What language is accepted by the following automata:



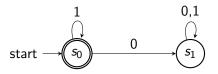
What language is accepted by the following automata:



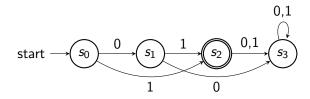
$$L(\mathbf{1}^*) = \{1\}^*$$



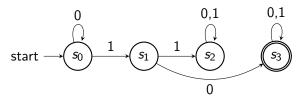
What language is accepted by the following automata:

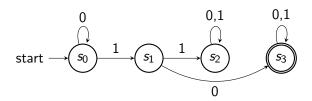


$$L(\mathbf{1}^*) = \{1\}^*$$



$$L(\mathbf{1} \cup \mathbf{01}) = \{1, 01\}$$





$$\textit{L}(\bm{0}^*\bm{10}(\bm{0}\cup\bm{1})^*) = \{0\}^*\{10\}\{0,1\}^*$$

Nondeterministic Finite Automata

So far we've considered deterministic finite automata (DFA)

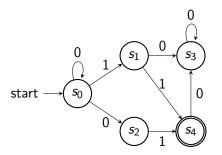
what happens in a state is completely determined by the input symbol read

Nondeterministic finite automata allow several possible next states when an input is read.

Formally, a nondeterministic finite automaton is a tuple $M = (S, I, f, s_0, F)$. All the components are just like a DFA, except now $f: S \times I \to 2^S$ (before, $f: S \times I \to S$).

▶ if $s' \in f(s, i)$, then s' is a possible next state if the machines is in state s and sees input i.

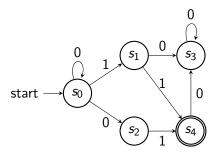
We can still use a graph to represent an NFA. There might be several edges coming out of a state labeled by $i \in I$, or none. In the example below, there are two edges coming out of s_0 labeled 0, and none coming out of s_4 labeled 1.



- ► Can either stay in s₀ or move to s₂
- ▶ On input 111, get stuck in s_4 after 11, so 111 not accepted.

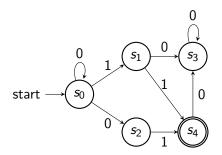
- ► An NFA *M* accepts (or recognizes) a string *x* if it is possible to get to a final state from the start state with input *x*.
- ► The language *L* is accepted by an NFA *M* consists of all strings accepted by *M*.

What language is accepted by this NFA:



- ► An NFA *M* accepts (or recognizes) a string *x* if it is possible to get to a final state from the start state with input *x*.
- ► The language *L* is accepted by an NFA *M* consists of all strings accepted by *M*.

What language is accepted by this NFA:



 $L(0*01 \cup 0*11)$

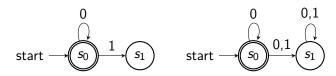
Equivalence of Automata

Every DFA is an NFA, but not every NFA is a DFA.

- Do we gain extra power from nondeterminism?
 - Are there languages that are accepted by an NFA that can't be accepted by a DFA?
 - ► Somewhat surprising answer: NO!

Define two automata to be *equivalent* if they accept the same language.

Example:



Theorem: Every nondeterministic finite automaton is equivalent to some deterministic finite automaton.

Proof: Given an NFA $M = (S, I, f, s_0, F)$, let $M' = (S', I, f', \{s_0\}, F')$, where

- ► $S' = 2^S$
- ► $f'(A, i) = \{t : t \in f(s, i) \text{ for some } s \in A\} \in 2^S$ ► $f' : 2^S \times I \to 2^S \text{ (i.e., } f' : S' \times I \to S')$
- $F' = \{A : A \cap F \neq \emptyset\}$

Thus,

- \blacktriangleright the states in M' are subsets of states in M;
- ► the final states in M' are the sets which contain a final state in M:
- ▶ in state A, given input i, the next state consists of all possible next states from an element in A.

M' is deterministic.

- ▶ This is called the *subset* construction.
- \triangleright The states in M' are subsets of states in M.

We want to show that M accepts x iff M' accepts x.

- $\blacktriangleright \text{ Let } x = x_1 \dots x_k.$
- ▶ If M accepts x, then there is a sequence of states s_0, \ldots, s_k such that $s_k \in F$ and $s_{i+1} \in f(s_i, x_{i+1})$.
 - ▶ That's what it means for an NFA M to accept x
 - ▶ $s_0, ..., s_k$ is a possible sequence of states that M goes through on input x
 - ▶ It's only one possible sequence: *M* is an NFA
- ▶ Define $A_0, ..., A_k$ inductively:

$$A_0 = \{s_0\}$$
 and $A_{i+1} = f'(A_i, x_i)$.

- Intuitively, A_i is the set of states that M could be in after seeing x₁...x_i
 - \blacktriangleright Remember: a state in M' is a set of states in M.
 - ightharpoonup M' is deterministic: this sequence is unique.
- ▶ An easy induction shows that $s_i \in A_i$.
- ▶ Therefore $s_k \in A_k$, so $A_k \cap F \neq \emptyset$.
- ▶ Conclusion: $A_k \in F'$, so M' accepts x.

For the converse, suppose that M' accepts x

- Let A_0, \ldots, A_k be the sequence of states that M' goes through on input x.
- ▶ Since $A_k \cap F \neq \emptyset$, there is some $t_k \in A_k \cap F$.
- ▶ By induction, if $1 \le j \le k$, can find $t_{k-j} \in A_{k-j}$ such that $t_{k-j+1} \in f(t_{k-j}, x_{k-j})$.
- ▶ Since $A_0 = \{s_0\}$, we must have $s_0 = t_0$.
- ▶ Thus, $t_0 \dots t_k$ is an "accepting path" for x in M
- Conclusion: M accepts x

Notes:

- Michael Rabin and Dana Scott won a Turing award for defining NFAs and showing they are equivalent to DFAs
- ▶ This construction blows up the number of states:
 - $|S'| = 2^{|S|}$
 - Sometimes you can do better; in general, you can't

Regular Languages and Finite Automata

Some notation:

- ▶ Language *L* is *regular* iff $L = L(\mathbf{E})$ for some regexp \mathbf{E} .
- \triangleright L(M) is the language accepted by the automaton M

Theorem: L = L(M) for some automaton M iff L is regular.

First we'll show that every regular language is accepted by some finite automaton:

Proof: We show that $L(\mathbf{E})$ is regular by induction on the (length/structure) of \mathbf{E} . We need to show that

- ▶ $\emptyset = L(\emptyset) = L(M)$ for some finite automaton M
 - Easy: build an automaton where no input ever reaches a final state
- $\{\lambda\} = L(\lambda) = L(M)$ for some finite automaton M
 - ▶ Easy: M has two states, s_0 and s_1 , s_0 is the only accepting state, but every non-empty string ends leads to s_1 .
- ▶ For each $x \in I$, $\{x\} = L(\mathbf{x}) = L(M)$ for some automaton M
 - ▶ Easy: an automaton with states $\{s_0, s_1, s_2\}$, only s_1 is an accepting state, x leads from s_0 to s_1 , all other nonempty strings lead to s_2 .

▶ $L(\mathbf{E_1}\mathbf{E_2}) = L(M)$ for some M. Suppose that $L(\mathbf{E_1}) = A$, $L(\mathbf{E_2}) = B$, $A = L(M_A)$, and $B = L(M_B)$. We must show that AB = L(M) for some automaton M

Proof: Suppose that $M_A = (S_A, I, f_A, s_A, F_A)$ and $M_B = (S_B, I, f_B, s_B, F_B)$. Suppose that M_A and M_B and NFAs, and S_A and S_B are disjoint (without loss of generality).

Idea: We hook M_A and M_B together. Let NFA $M_{AB} = (S_A \cup S_B, I, f_{AB}, s_A, F_{AB})$, where

- ▶ $t \in f_{AB}(s, i)$ if either
 - $ightharpoonup s \in S_A$ and $t \in f_A(s,i)$, or
 - $ightharpoonup s \in S_B$ and $t \in f_B(s, i)$, or
 - ▶ $s \in F_A$ and $t \in f_B(s_B, i)$ ("switch" from M_A to M_B)

Idea: given input $xy \in AB$, the machine "guesses" when to switch from running M_A to running M_B .

 $L(M_{AB}) = AB.$

Proof: There are two parts to this proof:

- 1. Showing that if $x \in AB$, then $x \in L(M_{AB})$.
- 2. Show that if $x \in L(M_{AB})$, then $x \in AB$.

For part 1, suppose that $x = ab \in AB$, where $a = a_1 \dots a_k$ and $b = b_1 \dots b_m$. Then there exists an *accepting path* for a and one for b; that is, a sequence of states $s_0, \dots, s_k \in S_A$ and a sequence of states $t_0, \dots, t_m \in S_B$ such that

- $s_0 = s_A$ and $t_0 = s_B$;
- $ightharpoonup s_{i+1} \in f_A(s_i, a_{i+1}) \text{ and } t_{i+1} \in f_B(t_i, b_{i+1})$
- $s_k \in F_A$ and $t_m \in F_B$.

That means that after reading a, M_{AB} could be in state s_k . If $b = \lambda$, M_{AB} accepts a (since $s_k \in F_A \subseteq F_{AB}$ if $\lambda \in B$). Otherwise, M_{AB} can continue to t_1, \ldots, t_m when reading b, so it accepts ab (since $t_m \in F_B \subseteq F_{AB}$).

- ▶ is, $s_0, ..., s_k, t_1, ..., t_m$ is an accepting path for ab
 - ▶ Note that there is no t_0 ; we go from s_k to t_1

For part 2, suppose that $x=c_1\dots c_n$ is accepted by M_{AB} . That means that there is a sequence of states $s_0,\dots,s_n\in S_A\cup S_B$ such that

- $ightharpoonup s_0 = s_A$
- $ightharpoonup s_{i+1} \in f_{AB}(s_i, c_{i+1})$
- $ightharpoonup s_n \in F_{AB}$

If $s_n \in F_A$, then $\lambda \in B$, $s_0, \ldots, s_n \subseteq S_A$ (since once M_{AB} moves to a state in S_B , it never moves to a state in S_A), so x is accepted by M_A . Thus, $x \in A \subseteq AB$.

For part 2, suppose that $x = c_1 \dots c_n$ is accepted by M_{AB} . That means that there is a sequence of states $s_0, \dots, s_n \in S_A \cup S_B$ such that

- $ightharpoonup s_0 = s_A$
- ► $s_{i+1} \in f_{AB}(s_i, c_{i+1})$
- $ightharpoonup s_n \in F_{AB}$

If $s_n \in F_A$, then $\lambda \in B$, $s_0, \ldots, s_n \subseteq S_A$ (since once M_{AB} moves to a state in S_B , it never moves to a state in S_A), so x is accepted by M_A . Thus, $x \in A \subseteq AB$.

If $s_n \in F_B$, let s_j be the first state in the sequence in S_B . Then $s_0, \ldots, s_{j-1} \subseteq S_A$, $s_{j-1} \in F_A$, so $c_1 \ldots c_{j-1}$ is accepted by M_A , and hence is in A. Moreover, $s_B, s_j, \ldots, s_n \subseteq S_B$ (once M_{AB} is in a state of S_B , it never moves to a state of S_A), so $c_j \ldots c_n$ is accepted by M_B , and hence is in B. Thus,

$$x = (c_1 \ldots c_{j-1})(c_j \ldots c_n) \in AB.$$

▶ if $A = L(M_A)$ and $B = L(M_B)$, then $A \cup B = L(M)$ for some automaton M.

Proof: Suppose that $M_A = (S_A, I, f_A, s_A, F_A)$ and $M_B = (S_B, I, f_B, s_B, F_B)$. Suppose that M_A and M_B and NFAs, and S_A and S_B are disjoint.

Idea: given input $x \in A \cup B$, the machine "guesses" whether to run M_{Δ} or M_{R} .

- $M_{A \cup B} = (S_A \cup S_B \cup \{s_0\}, I, f_{A \cup B}, s_0, F_{A \cup B})$, where
 - s_0 is a new state, not in $S_A \cup S_B$
 - $f_{A \cup B}(s, i) = \begin{cases}
 f_A(s, i) & \text{if } s \in S_A \\
 f_B(s, i) & \text{if } s \in S_B \\
 f_A(s_A, i) \cup f_B(s_B, i) & \text{if } s = s_0
 \end{cases}$
- ▶ We have to prove that $L(M_{A \cup B}) = A \cup B$; this is straightforward.

- if $A = L(M_A)$, then $A^* = L(M)$ for some M.
 - ▶ Suppose that $M_A = (S_A, I, f_A, s_A, F_A)$
 - $M_{A^*} = (S_A \cup \{s_0\}, I, f_{A^*}, s_0, F_A \cup \{s_0\})$, where
 - s_0 is a new state, not in S_A ;

$$f_{A^*}(s,i) = \begin{cases} f_A(s,i) & \text{if } s \in S_A - F_A; \\ f_A(s,i) \cup f_A(s_A,i) & \text{if } s \in F_A; \\ f_A(s_A,i) & \text{if } s = s_0 \end{cases}$$

- We now have to prove that $L(M_{A^*}) = A^*$.
 - ► Homework!

Next we'll show that every language accepted by a finite automaton is regular:

Proof: Fix an automaton M with states $\{s_0, \ldots, s_n\}$. Can assume wlog (without loss of generality) that M is deterministic.

▶ a language is accepted by a DFA iff it is accepted by a NFA.

Let $S(s_i, s_j, k)$ be the set of strings that force M from state s_i to s_j on a path such that every intermediate state is $\{s_0, \ldots, s_k\}$.

▶ E.g., $S(s_4, s_5, 2)$ consists of all strings that force M from s_4 to s_5 on a path that goes through only s_0 , s_1 , and s_2 (in any order, perhaps with repeats).

Note that a string x is accepted by M iff $x \in S(s_0, s, n)$ for some final state s. Thus, L(M) is the union over all final states s of $S(s_0, s, n)$.

We will prove by induction on k that $S(s_i, s_i, k)$ is regular.

- ▶ Why not just take $s_i = s_0$?
 - ▶ We need a stronger induction hypothesis

We will prove by induction on k that $S(s_i, s_j, k)$ is regular.

- ▶ Why not just take $s_i = s_0$?
 - We need a stronger induction hypothesis

Base case:

Lemma 1: $S(s_i, s_j, -1)$ is regular.

Proof: For a string σ to be in $S(s_i, s_j, -1)$, it must go directly from s_i to s_j , without going through any intermediate strings. Thus, σ must be some subset of I (possibly empty) together with λ if $s_i = s_j$. Either way, $S(s_i, s_j, -1)$ is regular.

Lemma 2: If $s_j \neq s_{k+1}$, then $S(s_i, s_j, k+1) = S(s_i, s_j, k) \cup S(s_i, s_{k+1}, k)(S(s_{k+1}, s_{k+1}, k))^* S(s_{k+1}, s_j, k)$.

Lemma 2: If $s_j \neq s_{k+1}$, then $S(s_i, s_j, k+1) = S(s_i, s_i, k) \cup S(s_i, s_{k+1}, k)(S(s_{k+1}, s_{k+1}, k))^* S(s_{k+1}, s_i, k)$.

Proof: If a string σ forces M from s_i to s_j on a path with intermediates states all in $\{s_0,\ldots,s_{k+1}\}$, then the path either does not go through s_{k+1} at all, so is in $S(s_i,s_j,k)$, or goes through s_{k+1} some finite number of times, say m. That is, the path looks like this:

$$s_i \dots s_{k+1} \dots s_{k+1} \dots s_{k+1} \dots s_j$$

where all the states in the ... part are in $\{s_0, \ldots, s_k\}$. Thus, we can split up the string σ into m+1 corresponding pieces:

- $ightharpoonup \sigma_0$ that takes M from s_i to s_{k+1} ,
- \blacktriangleright each of $\sigma_1, \ldots, \sigma_m$ take M from s_{k+1} back to s_{k+1}
- $ightharpoonup \sigma_{m+1}$ takes M from s_{k+1} to s_i .

Thus,

- \bullet $\sigma_0 \in S(s_i, s_{k+1}, k)$
- $ightharpoonup \sigma_1, \ldots, \sigma_m$ are all in $S(s_{k+1}, s_{k+1}, k)$
- $ightharpoonup \sigma_{m+1} \in S(s_{k+1}, s_i, k)$
- ► So $\sigma = \sigma_0 \sigma_1 \dots \sigma_{m+1} \in S(s_i, s_j, k) \cup S(s_i, s_{k+1}, k) (S(s_{k+1}, s_{k+1}, k))^* S(s_{k+1}, s_j, k)$

$$S(s_i, s_j, k+1) = S(s_i, s_j, k) \cup S(s_i, s_j, k)(S(s_j, s_j, k))^*.$$

Proof: Same idea as previous proof.

$$S(s_i, s_j, k+1) = S(s_i, s_j, k) \cup S(s_i, s_j, k)(S(s_j, s_j, k))^*.$$

Proof: Same idea as previous proof.

$$S(s_i, s_j, k+1) = S(s_i, s_j, k) \cup S(s_i, s_j, k) (S(s_j, s_j, k))^*.$$

Proof: Same idea as previous proof.

Lemma 4: $S(s_i, s_j, N)$ is regular for all N with $-1 \le N \le n$.

Proof: An easy induction. Lemma 1 gives the base case; Lemmas 2 and 3 give the inductive step.

$$S(s_i, s_j, k+1) = S(s_i, s_j, k) \cup S(s_i, s_j, k) (S(s_j, s_j, k))^*.$$

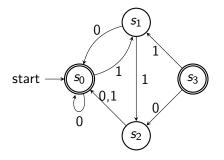
Proof: Same idea as previous proof.

Lemma 4: $S(s_i, s_j, N)$ is regular for all N with $-1 \le N \le n$.

Proof: An easy induction. Lemma 1 gives the base case; Lemmas 2 and 3 give the inductive step.

The language accepted by M is the union of the sets $S(s_0, s', n)$ such that s' is a final state. Since regular languages are closed under union, the result follows.

We can use the ideas of this proof to compute the regular language accepted by an automaton.



- $S(s_0, s_0, -1) = \{\lambda, 0\}; S(s_0, s_1, -1) = \{1\}; \dots$
- ► $S(s_0, s_0, 0) = 0^*$; $S(s_1, s_0, 0) = 00^*$; $S(s_0, s_1, 0) = 0^*1$; $S(s_1, s_1, 0) = 00^*1$; ...
- $S(s_0, s_0, 1) = (0^*(10)^*)^*; \dots$
- **.** . . .

We can methodically build up $S(s_0, s_0, 2)$, which is what we want (since s_3 is unreachable).

A Non-Regular Language

Not every language is regular (which means that not every language can be accepted by a finite automaton).

Theorem: $L = \{0^n 1^n : n = 0, 1, 2, ...\}$ is not regular.

Proof: Suppose, by way of contradiction, that L is regular. Then there is a DFA $M=(S,\{0,1\},f,s_0,F)$ that accepts L. Suppose that M has N states. Let s_0,\ldots,s_{2N} be the set of states that M goes through on input 0^N1^N

► Thus $f(s_i, 0) = s_{i+1}$ for i = 0, ..., N.

Since M has N states, by the pigeonhole principle (remember that?), at least two of s_0, \ldots, s_N must be the same. Suppose it's s_i and s_i , where i < j, and j - i = t.

Claim: *M* accepts $0^{N}0^{t}1^{N}$, and $0^{N}0^{2t}1^{N}$, $0^{N}0^{3t}1^{N}$.

Proof: Starting in s_0 , 0^i brings the machine to s_i ; another 0^t bring the machine back to s_i (since $s_j = s_{i+t} = s_i$); another 0^t bring machine back to s_i again. After going around the loop for a while, the can continue to s_N and accept.

34 / 37

The Pumping Lemma

The techniques of the previous proof generalize. If M is a DFA and x is a string accepted by M such that $|x| \ge |S|$

ightharpoonup |S| is the number of states; |x| is the length of x then there are strings u, v, w such that

- $\triangleright x = uvw$,
- ▶ $|uv| \leq |S|$,
- ▶ $|v| \ge 1$,
- uv^iw is accepted by M, for i = 0, 1, 2, ...

The proof is the same as on the previous slide.

 \rightarrow x was $0^n 1^n$, $u = 0^i$, $v = 0^t$, $w = 0^{N-t-i} 1^N$.

We can use the Pumping Lemma to show that many languages are *not* regular

- $\{1^{n^2}: n = 0, 1, 2, \ldots\}$: homework
- $\{0^{2n}1^n : n = 0, 1, 2, ...\}$: homework
- $\{1^n : n \text{ is prime}\}$
- **.** . . .

More Powerful Machines

Finite automata are very simple machines.

- ► They have no memory
- Roughly speaking, they can't count beyond the number of states they have.

Pushdown automata have states and a stack which provides unlimited memory.

- They can recognize all languages generated by context-free grammars (CFGs)
 - CFGs are typically used to characterize the syntax of programming languages
- ▶ They can recognize the language $\{0^n1^n : n = 0, 1, 2, ...\}$, but not the language $L' = \{0^n1^n2^n : n = 0, 1, 2, ...\}$

Linear bounded automata can recognize L'.

- More generally, they can recognize context-sensitive grammars (CSGs)
- CSGs are (almost) good enough to characterize the grammar of real languages (like English)

Most general of all: Turing machine (TM)

- ▶ Given a computable language, there is a TM that accepts it.
- ▶ This is essentially how we define computability.

If you're interested in these issues, take CS 4810!