Suppose that you toss a coin that has success pobability of $p n$ times. What's the expected number of heads? I gave an intuitive induction argument in class today whose formalization may not have been so clear. Here are the details.

I'm actually using a general fact that was proved formally in Friday's class, which should be pretty intuitive:

$$
E(X)=\operatorname{Pr}(A) E(X \mid A)+\operatorname{Pr}(\bar{A}) E(X \mid \bar{A})
$$

Here, the A is "get heads on the first coin toss", so $\operatorname{Pr}(A)=p$, and $\operatorname{Pr}(\bar{A})=1-p$. I want to show that $E\left(B_{n, p} \mid \bar{A}\right)=B_{n-1, p}$ and $E+\left(B_{n, p} \mid A\right)=1+B_{n-1, p}$. This will give me

$$
E\left(B_{n, p}\right)=p\left(1+E\left(B_{n-1, p}\right)\right)+(1-p) E\left(B_{n-1, p}\right)
$$

which is what I claimed in the class notes.
The argument that $E\left(B_{n, p} \mid \bar{A}\right)=B_{n-1, p}$ is straightforward. Conditional on getting tails in the first coin toss, the probability of getting k heads is exactly the probability of getting k heads in the last $n-1$ coin tosses, so the expected number of heads is $\sum_{k=0}^{n-1} k \operatorname{Pr}(k$ heads in last $n-1$ tosses $)$; this is exactly $B_{n-1, p}$.

Showing that $E\left(B_{n, p} \mid \bar{A}\right)=B_{n-1, p}$ is slightly harder. Conditional on getting heads in the first coin toss, the probability of getting k heads is exactly the probability of getting $k-1$ heads in the last $n-1$ coin tosses, so the expected number of heads conditional on getting heads in the first coin toss is

$$
\begin{aligned}
& \sum_{k=0}^{n} k \operatorname{Pr}(k-1 \text { heads in last } n-1 \text { tosses }) \\
= & \sum_{k=0}^{n}(1+(k-1)) \operatorname{Pr}(k-1 \text { heads in last } n-1 \text { tosses }) \\
= & \sum_{k=1}^{n} \operatorname{Pr}(k-1 \text { heads in last } n-1 \text { tosses })+\sum_{k=1}^{n}(k-1) \operatorname{Pr}(k-1 \text { heads in last } n-1 \text { tosses }) \\
= & \sum_{k=0}^{n-1} \operatorname{Pr}(k \text { heads in last } n-1 \text { tosses })+\sum_{k=0}^{n-1} k \operatorname{Pr}(k \text { heads in last } n-1 \text { tosses }) \\
= & 1+E\left(B_{n-1, p}\right) .
\end{aligned}
$$

As I said in class, once you show that expectation is linear (which is not at all hard, and was done in class) that provides an even simpler argument ...

