# Relations

# Cartesian product:

- $S \times T = \{(s, t) : s \in S, t \in T\}$   $\{1, 2, 3\} \times \{3, 4\} = \{(1, 3), (2, 3), (3, 3), (1, 4), (2, 4), (3, 4)\}$  $|S \times T| = |S| \times |T|.$
- A relation on S and T (or, on  $S \times T$ ) is a subset of  $S \times T$
- A relation on S is a subset of  $S \times S$ 
  - ► *Taller than* is a relation on people: (Joe,Sam) is in the Taller than relation if Joe is Taller than Sam
  - Greater than is a relation on **R** (the real numbers):

$$L = \{(x,y) : x,y \in R, x > y\}$$

► *Divisibility* is a relation on **N** (the natural numbers):

$$D = \{(x, y) : x, y \in \mathbf{N}, x | y\}$$

Notation: the book writes a R b to denote that the pair  $(a, b) \in R$ . The latter notation is more standard, and that's what I will use.

You can use either one.

# Functions; Composing and Inverting Relations

A function  $f : A \to B$  is just a relation where for all  $a \in A$ , there is a unique  $b \in B$  such that  $(a, b) \in R$ .

If R is a relation on  $A \times B$ , then  $R^{-1}$  is a relation on  $B \times A$ :

 $(a, b) \in R$  iff  $(b, a) \in R^{-1}$ .

This generalizes the definition of inverse function

# Functions; Composing and Inverting Relations

A function  $f : A \to B$  is just a relation where for all  $a \in A$ , there is a unique  $b \in B$  such that  $(a, b) \in R$ .

If R is a relation on  $A \times B$ , then  $R^{-1}$  is a relation on  $B \times A$ :

 $(a,b) \in R$  iff  $(b,a) \in R^{-1}$ .

▶ This generalizes the definition of inverse function If *R* is a relation on  $B \times C$  and *S* is a relation on  $A \times B$ , then  $R \circ S$  is a relation on  $A \times C$ :

 $(a,c) \in R \circ S$  iff  $\exists b((a,b) \in S$  and  $(b,c) \in R)$ .

- ▶ Note the order of *R* and *S* on the right-hand side
- This is what we need to generalize the definition of function composition:
  - ▶ If  $f : A \to B$ ,  $g : B \to C$ , then  $g \circ f : A \to C$  (note that it's  $g \circ f$ , not  $f \circ c$ )
  - ▶  $g \circ f(a) = g(f(a)) = c$  if there exists a b such that f(a) = band g(b) = c (i.e.,  $(a, b) \in f$  and  $(b, c) \in g$ ).

$$\triangleright \ R \circ R = \{ (n, n+2) : n \in \mathbb{N} \}.$$

How do you prove this?

 $\triangleright \ R \circ R = \{ (n, n+2) : n \in \mathbb{N} \}.$ 

How do you prove this?

Let  $S = \{(n, n+2) : n \in \mathbb{N}\}$ . We need to show that  $R \circ R \subseteq S$ and  $S \subseteq R \circ R$ :

- $\triangleright \ R \circ R = \{ (n, n+2) : n \in \mathbb{N} \}.$
- How do you prove this?

Let  $S = \{(n, n+2) : n \in \mathbb{N}\}$ . We need to show that  $R \circ R \subseteq S$ and  $S \subseteq R \circ R$ :

- Suppose that  $x \in S$ . Then x = (n, n+2) for some n.
- Note that  $(n, n+1) \in R$  and  $(n+1, n+2) \in R$ .
- ▶ Thus, by definition  $(n, n+2) \in R \circ R$ ; that is,  $x \in R \circ R$ .

This shows that  $S \subseteq R \circ R$ .

- $\triangleright \ R \circ R = \{ (n, n+2) : n \in \mathbb{N} \}.$
- How do you prove this?

Let  $S = \{(n, n+2) : n \in \mathbb{N}\}$ . We need to show that  $R \circ R \subseteq S$ and  $S \subseteq R \circ R$ :

- Suppose that  $x \in S$ . Then x = (n, n+2) for some n.
- ▶ Note that  $(n, n+1) \in R$  and  $(n+1, n+2) \in R$ .
- ▶ Thus, by definition  $(n, n+2) \in R \circ R$ ; that is,  $x \in R \circ R$ .

This shows that  $S \subseteq R \circ R$ .

The other direction works essentially the same way:

- Suppose that  $(a, c) \in R \circ R$ .
- ► Then (by definition), there is a b such that (a, b) ∈ R and (b, c) ∈ R.
- Thus, b = a + 1 and c = b + 1 = a + 2.
- Thus  $(a, c) = (a, a + 2) \in S$ .

This shows that  $R \circ R \subseteq S$ .

# Graphs

A graph consists of nodes and edges between nodes.

A *directed graph* (*digraph*) is one where the edges have a direction, usually denoted with an arrow.



Graphs come up everywhere.

- We can view the internet as a graph (in many ways)
  - who is connected to whom
- Web search views web pages as a graph
  - who points to whom
- Niche graphs (Ecology):
  - The vertices are species
  - Two vertices are connected by an edge if they compete (use the same food resources, etc.)

Niche graphs give a visual representation of competitiveness.

- Influence Graphs
  - The vertices are people
  - There is an edge from a to b if a influences b

Influence graphs give a visual representation of power structure.

There are lots of other examples in all fields ....

# Terminology and Notation

An undirected graph G is a pair (V, E), where V is a set of vertices or nodes and E is a set of edges or branches; an edge is a set  $\{v, v'\}$  of two not necessarily distinct vertices (i.e.,  $v, v' \in V$ ).

- We sometimes write G(V, E) instead of G
- ► We sometimes write V(G) and E(G) if we want to emphasize the graph that the vertices and edges come from.

# Terminology and Notation

An undirected graph G is a pair (V, E), where V is a set of vertices or nodes and E is a set of edges or branches; an edge is a set  $\{v, v'\}$  of two not necessarily distinct vertices (i.e.,  $v, v' \in V$ ).

- We sometimes write G(V, E) instead of G
- ► We sometimes write V(G) and E(G) if we want to emphasize the graph that the vertices and edges come from.
- A digraph is a pair (V, E) where E is a set of directed edges
  - A directed edge is a pair (v, v'), where  $v, v' \in G$
  - The order matters!

Walks, Paths, and Cycles

► A walk in a graph G is an alternating sequence of vertices and edges, starting and ending with a vertex, where, for every edge (u, v) on the walk, u is the preceding vertex and v is the following vertex. Walks, Paths, and Cycles

► A walk in a graph G is an alternating sequence of vertices and edges, starting and ending with a vertex, where, for every edge (u, v) on the walk, u is the preceding vertex and v is the following vertex.

▶ E.g., 1 (1,3), 3, (3,8), 8

# Walks, Paths, and Cycles

- ► A walk in a graph G is an alternating sequence of vertices and edges, starting and ending with a vertex, where, for every edge (u, v) on the walk, u is the preceding vertex and v is the following vertex.
  - E.g., 1 (1,3), 3, (3,8), 8
  - Yuck! (The vertices are redundant)
    - It's more standard to leave them out; the text includes them
- The *length* of a walk is the number of vertices -1
- A path is a walk where all the vertices are different
- A cycle is a walk of positive length where all vertices are distinct except for the first and last one

#### Graphs and Relations

Given a relation R on  $S \times T$ , we can represent it by the directed graph G(V, E), where

• 
$$V = S \cup T$$
 and

► 
$$E = \{(s, t) : (s, t) \in R\}$$

**Example:** We can represent the < relation on  $\{0, 1, 2, 3, 4\}$  graphically.



- A relation R on S is *reflexive* if  $(x, x) \in R$  for all  $x \in S$ .
  - $\leq$  is reflexive; < is not

- A relation R on S is *reflexive* if  $(x, x) \in R$  for all  $x \in S$ .
  - $\leq$  is reflexive; < is not
- A relation R on S is *irreflexive* if  $(x, x) \notin R$  for all  $x \in S$ .
  - $\blacktriangleright$  < is irreflexive;  $\leq$  is not

- A relation R on S is *reflexive* if  $(x, x) \in R$  for all  $x \in S$ .
  - $\leq$  is reflexive; < is not
- A relation R on S is *irreflexive* if  $(x, x) \notin R$  for all  $x \in S$ .
  - < is irreflexive;  $\leq$  is not
- A relation R on S is symmetric if  $(x, y) \in R$  implies  $(y, x) \in R$ .
  - "sibling-of" is symmetric (what about "sister of")
  - $\blacktriangleright$   $\leq$  is not symmetric

- A relation R on S is *reflexive* if  $(x, x) \in R$  for all  $x \in S$ .
  - $\leq$  is reflexive; < is not
- A relation R on S is *irreflexive* if  $(x, x) \notin R$  for all  $x \in S$ .
  - < is irreflexive;  $\leq$  is not
- A relation R on S is symmetric if  $(x, y) \in R$  implies  $(y, x) \in R$ .
  - "sibling-of" is symmetric (what about "sister of")
  - $\blacktriangleright$   $\leq$  is not symmetric
- A relation R on S is asymmetric if  $(x, y) \in R$  implies  $(y, x) \notin R$ .
  - < and > are asymmetric
  - $\blacktriangleright \ \leq \text{ and } \geq \text{ are not }$

- A relation R on S is *reflexive* if  $(x, x) \in R$  for all  $x \in S$ .
  - $\leq$  is reflexive; < is not
- A relation R on S is *irreflexive* if  $(x, x) \notin R$  for all  $x \in S$ .
  - $\blacktriangleright$  < is irreflexive;  $\leq$  is not
- A relation R on S is symmetric if  $(x, y) \in R$  implies  $(y, x) \in R$ .
  - "sibling-of" is symmetric (what about "sister of")
  - $\blacktriangleright$   $\leq$  is not symmetric
- A relation R on S is asymmetric if  $(x, y) \in R$  implies  $(y, x) \notin R$ .
  - < and > are asymmetric
  - $\blacktriangleright$   $\leq$  and  $\geq$  are not
- A relation R on S is antisymmetric if (x, y) ∈ R and x ≠ y implies (y, x) ∉ R.
  - $\blacktriangleright$   $\leq$  and  $\geq$  are antisymmetric

• A relation R on S is *reflexive* if  $(x, x) \in R$  for all  $x \in S$ .

•  $\leq$  is reflexive; < is not

- ▶ A relation *R* on *S* is *irreflexive* if  $(x, x) \notin R$  for all  $x \in S$ .
  - $\blacktriangleright$  < is irreflexive;  $\leq$  is not
- A relation R on S is symmetric if  $(x, y) \in R$  implies  $(y, x) \in R$ .
  - "sibling-of" is symmetric (what about "sister of")
  - $\blacktriangleright$   $\leq$  is not symmetric
- A relation R on S is asymmetric if  $(x, y) \in R$  implies  $(y, x) \notin R$ .
  - < and > are asymmetric
  - $\blacktriangleright$   $\leq$  and  $\geq$  are not
- A relation R on S is antisymmetric if (x, y) ∈ R and x ≠ y implies (y, x) ∉ R.

•  $\leq$  and  $\geq$  are antisymmetric

- A relation R on S is transitive if (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R.
  - $\leq$ , <,  $\geq$ , > are all transitive;
  - "parent-of" is not transitive; "ancestor-of" is

reflexive?

▶ reflexive?

- ▶ reflexive?
- symmetric?

reflexive?
symmetric?

- ▶ reflexive?
- ► symmetric?
- transitive?

- reflexive?
  symmetric?
- ► transitive?



# Equivalence Relations

► A relation *R* is an *equivalence relation* if it is reflexive, symmetric, and transitive

- $\blacktriangleright$  = is an equivalence relation
- ► Parity is an equivalence relation on N; (x, y) ∈ Parity if x − y is even

# Equivalence Relations

► A relation *R* is an *equivalence relation* if it is reflexive, symmetric, and transitive

- $\blacktriangleright$  = is an equivalence relation
- ► Parity is an equivalence relation on N; (x, y) ∈ Parity if x − y is even

An equivalence relation on S partitions S into equivalence classes:

▶ The equivalence class of *s* is denoted [*s*].

▶ 
$$[s] = \{t : (s, t) \in R\}$$

**Theorem:** Equivalences classes are either equal or disjoint: for all  $s, s' \in S$ , either [s] = [s'] or  $[s] \cap [s'] = \emptyset$ .

# Equivalence Relations

► A relation *R* is an *equivalence relation* if it is reflexive, symmetric, and transitive

- $\blacktriangleright$  = is an equivalence relation
- ► Parity is an equivalence relation on N; (x, y) ∈ Parity if x − y is even

An equivalence relation on S partitions S into equivalence classes:

▶ The equivalence class of *s* is denoted [*s*].

▶ 
$$[s] = \{t : (s, t) \in R\}$$

**Theorem:** Equivalences classes are either equal or disjoint: for all  $s, s' \in S$ , either [s] = [s'] or  $[s] \cap [s'] = \emptyset$ .

What are the equivalence classes of the parity relation?

# **Transitive Closure**

The transitive closure of a relation R is the least relation  $R^*$  such that

- **1**.  $R \subseteq R^*$
- 2.  $R^*$  is transitive (so that if  $(u, v), (v, w) \in R^*$ , then so is (u, w)).

# Transitive Closure

The transitive closure of a relation R is the least relation  $R^*$  such that

- **1**.  $R \subseteq R^*$
- 2.  $R^*$  is transitive (so that if  $(u, v), (v, w) \in R^*$ , then so is (u, w)).

How do we know that there is a least relation  $R^*$  with these properties:

- "least" means that R\* must be a subset of any other relation with these properties;
- ▶ that is, if there is a relation R' such that that  $R \subseteq R'$  and R' is transitive, then  $R^* \subseteq R'$ .

# Transitive Closure

The transitive closure of a relation R is the least relation  $R^*$  such that

- **1**.  $R \subseteq R^*$
- 2.  $R^*$  is transitive (so that if  $(u, v), (v, w) \in R^*$ , then so is (u, w)).

How do we know that there is a least relation  $R^*$  with these properties:

- "least" means that R\* must be a subset of any other relation with these properties;
- ▶ that is, if there is a relation R' such that that  $R \subseteq R'$  and R' is transitive, then  $R^* \subseteq R'$ .

Take  $R^*$  to be the intersection of all the transitive relations that contain R.

▶ We must check that the intersection contains *R* and is transitive.

Clearly  $R^*$  is a subset of any transtive relation R' that contains R.

**Example:** Suppose  $R = \{(1, 2), (2, 3), (1, 4)\}$ .

- $\blacktriangleright R^* = \{(1,2), (1,3), (2,3), (1,4)\}$
- ▶ we need to add (1,3), because  $(1,2), (2,3) \in R$

Note that we don't need to add (2,4).

- ▶ If (2,1), (1,4) were in *R*, then we'd need (2,4)
- (1,2), (1,4) doesn't force us to add anything (it doesn't fit the "pattern" of transitivity.

Note that if R is already transitive, then  $R^* = R$ .

Given a relation R on S, here is a constructive inductive definition of transitive closure. Define  $R_0, R_1, \ldots$  inductively:

• Let 
$$R_0 = R$$
.

▶ Let  $R_{n+1} = R_n \cup \{(s,t) : \exists u \in S((s,u) \in R_n, (u,t) \in R_n)\}.$ 

• Let 
$$R' = \bigcup_{n=0}^{\infty} R_n$$
.

Given a relation R on S, here is a constructive inductive definition of transitive closure. Define  $R_0, R_1, \ldots$  inductively:

• Let 
$$R_0 = R$$
.

▶ Let  $R_{n+1} = R_n \cup \{(s,t) : \exists u \in S((s,u) \in R_n, (u,t) \in R_n)\}.$ 

• Let 
$$R' = \bigcup_{n=0}^{\infty} R_n$$
.

**Theorem:** R' is the transitive closure of R.

What do you have to prove to show that this is true?

Given a relation R on S, here is a constructive inductive definition of transitive closure. Define  $R_0, R_1, \ldots$  inductively:

• Let 
$$R_0 = R$$
.

▶ Let  $R_{n+1} = R_n \cup \{(s,t) : \exists u \in S((s,u) \in R_n, (u,t) \in R_n)\}.$ 

• Let 
$$R' = \bigcup_{n=0}^{\infty} R_n$$
.

**Theorem:** R' is the transitive closure of R.

What do you have to prove to show that this is true?

► 
$$R \subseteq R'$$

Given a relation R on S, here is a constructive inductive definition of transitive closure. Define  $R_0, R_1, \ldots$  inductively:

• Let 
$$R_0 = R$$
.

▶ Let  $R_{n+1} = R_n \cup \{(s,t) : \exists u \in S((s,u) \in R_n, (u,t) \in R_n)\}.$ 

• Let 
$$R' = \bigcup_{n=0}^{\infty} R_n$$
.

**Theorem:** R' is the transitive closure of R.

What do you have to prove to show that this is true?

- $R \subseteq R'$
- R' is transitive
- If R" is transitive and R ⊆ R", then R' ⊆ R" (i.e., R' is the smallest transitive set that contains R).

This will be homework.

### Partial Orders

A relation is strict partial order if it is irreflexive and transitive.

< and > are strict partial orders

A relation is *weak partial order* if it is reflexive, transitive, and antisymmetric

•  $\leq$  and  $\geq$  are weak partial orders