Relations

» Cartesian product:
SxT={(s,t):s€S5,teT}
» {1,2,3} x {3,4} =
{(1,3),(2,3),(3,3),(1,4),(2,4),(3,4)}
» |Sx T|=|S| x|T|.
» A relationon S and T (or,on S x T)is a subset of S x T
> A relation on S is a subset of S x S
» Taller than is a relation on people: (Joe,Sam) is in the Taller
than relation if Joe is Taller than Sam
» Greater than is a relation on R (the real numbers):

L={(x,y):x,y e R,x >y}
» Divisibility is a relation on N (the natural numbers):

D ={(x,y):x,y € N,x|y}

Notation: the book writes a R b to denote that the pair (a, b) € R.

The latter notation is more standard, and that's what | will use.
» You can use either one.
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Functions; Composing and Inverting Relations
A function f : A — B is just a relation where for all a € A, there is
a unique b € B such that (a, b) € R.

If R is a relation on A x B, then R~1 is a relation on B x A:
(a, b) € R iff (b,a) € R7L.

» This generalizes the definition of inverse function
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Functions; Composing and Inverting Relations
A function f : A — B is just a relation where for all a € A, there is

a unique b € B such that (a, b) € R.
If R is a relation on A x B, then R~1 is a relation on B x A:

(a, b) € R iff (b,a) € R7L.

» This generalizes the definition of inverse function
If R is a relation on B x C and S is a relation on A x B, then
R oS is a relation on A x C:

(a,c) € Ro S iff 3b((a,b) € S and (b, c) € R).

> Note the order of R and S on the right-hand side
» This is what we need to generalize the definition of function

composition:
» Iff:A— B, g:B— C, thengof:A— C (note that it's
gof,not foc)
» gof(a)=g(f(a)) = c if there exists a b such that f(a) = b
and g(b) = c (i.e., (a,b) € f and (b, ¢) € g).

)
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Example: If R = {(n,n+ 1) : n € N}, then what's Ro R?
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Example: If R = {(n,n+ 1) : n € N}, then what's Ro R?

» RoR={(n,n+2):ne N}.

» How do you prove this?
Let S={(n,n+2):ne€ N}. We need to show that RoRC S
and SC RoR:

» Suppose that x € S. Then x = (n, n + 2) for some n.

» Note that (n,n+1)€ Rand (n+1,n+2) € R.

» Thus, by definition (n,n+2) € Ro R; thatis, x € Ro R.
This shows that S C Ro R.

The other direction works essentially the same way:
» Suppose that (a,c) € Ro R.
» Then (by definition), there is a b such that (a, b) € R and
(b,c) € R.
» Thus, b=a+1landc=b+1=a-+2.
» Thus (a,c) = (a,a+2) €S.
This shows that Ro R C S.
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Graphs

A graph consists of nodes and edges between nodes.

A directed graph (digraph) is one where the edges have a
direction, usually denoted with an arrow.

14



Graphs come up everywhere.

» We can view the internet as a graph (in many ways)
» who is connected to whom

» Web search views web pages as a graph
» who points to whom

» Niche graphs (Ecology):
» The vertices are species

» Two vertices are connected by an edge if they compete (use
the same food resources, etc.)

Niche graphs give a visual representation of competitiveness.

» Influence Graphs

» The vertices are people
» There is an edge from a to b if a influences b

Influence graphs give a visual representation of power
structure.

There are lots of other examples in all fields ...

5/14



Terminology and Notation

An undirected graph G is a pair (V, E), where V is a set of

vertices or nodes and E is a set of edges or branches; an edge is a

set {v, v’} of two not necessarily distinct vertices (i.e., v,v' € V).
» We sometimes write G(V/, E) instead of G

» We sometimes write V(G) and E(G) if we want to emphasize
the graph that the vertices and edges come from.

6
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Terminology and Notation

An undirected graph G is a pair (V, E), where V is a set of
vertices or nodes and E is a set of edges or branches; an edge is a
set {v, v’} of two not necessarily distinct vertices (i.e., v,v' € V).

» We sometimes write G(V/, E) instead of G

» We sometimes write V(G) and E(G) if we want to emphasize
the graph that the vertices and edges come from.

A digraph is a pair (V, E) where E is a set of directed edges
» A directed edge is a pair (v, V'), where v,v/ € G

» The order matters!
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Walks, Paths, and Cycles

» A walk in a graph G is an alternating sequence of vertices and
edges, starting and ending with a vertex, where, for every
edge (u, v) on the walk, u is the preceding vertex and v is the
following vertex.
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» A walk in a graph G is an alternating sequence of vertices and
edges, starting and ending with a vertex, where, for every
edge (u, v) on the walk, u is the preceding vertex and v is the
following vertex.

» E.g.,1(1,3),3 (38) 8
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Walks, Paths, and Cycles

v

A walk in a graph G is an alternating sequence of vertices and
edges, starting and ending with a vertex, where, for every
edge (u, v) on the walk, u is the preceding vertex and v is the
following vertex.

» Eg.,1(1,3) 3, (38), 8

» Yuck! (The vertices are redundant)

» It's more standard to leave them out; the text includes them

v

The length of a walk is the number of vertices —1

v

A path is a walk where all the vertices are different

» A cycle is a walk of positive length where all vertices are
distinct except for the first and last one
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Graphs and Relations

Given a relation R on § x T, we can represent it by the directed
graph G(V, E), where

» V=SUT and

» E={(s,t):(s,t) € R}
Example: We can represent the < relation on {0, 1,2, 3,4}
graphically.

14



Various Properties of Relations and Graphs

» A relation R on S is reflexive if (x,x) € R for all x € S.
» < is reflexive; < is not
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> A relation R on S is irreflexive if (x,x) ¢ R for all x € S.

» < is irreflexive; < is not
» A relation R on S is symmetric if (x,y) € R implies
(y,x) € R.
» “sibling-of” is symmetric (what about “sister of”)
» < is not symmetric
» A relation R on S is asymmetric if (x,y) € R implies
(y;x) € R.
» < and > are asymmetric
» < and > are not

14



Various Properties of Relations and Graphs

» A relation R on S is reflexive if (x,x) € R for all x € S.
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A relation R on S is symmetric if (x,y) € R implies
(y,x) € R.
» “sibling-of” is symmetric (what about “sister of”)
» < is not symmetric
A relation R on S is asymmetric if (x,y) € R implies
(y;x) € R.
» < and > are asymmetric
» < and > are not
A relation R on S is antisymmetric if (x,y) € R and x # y
implies (y,x) ¢ R.
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v

v
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Various Properties of Relations and Graphs

» A relation R on S is reflexive if (x,x) € R for all x € S.
» < is reflexive; < is not

> A relation R on S is irreflexive if (x,x) ¢ R for all x € S.
» < is irreflexive; < is not
» A relation R on S is symmetric if (x,y) € R implies
(y,x) € R.
» “sibling-of” is symmetric (what about “sister of”)
» < is not symmetric
» A relation R on S is asymmetric if (x,y) € R implies
(y;x) € R.
» < and > are asymmetric
» < and > are not
» A relation R on S is antisymmetric if (x,y) € R and x # y
implies (y,x) ¢ R.
» < and > are antisymmetric
» A relation R on S is transitive if (x,y) € R and (y,z) € R

implies (x,z) € R.
» <, <, >, > are all transitive;
» ‘“parent-of” is not transitive; “ancestor-of” is

14



How does the graphical representation show that a graph is

> reflexive?
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How does the graphical representation show that a graph is

> reflexive? P

> symmetric? <=

> transitive? A
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Equivalence Relations

» A relation R is an equivalence relation if it is reflexive,
symmetric, and transitive
» = is an equivalence relation

» Parity is an equivalence relation on N,
(x,y) € Parity if x — y is even
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Equivalence Relations

» A relation R is an equivalence relation if it is reflexive,
symmetric, and transitive
» = is an equivalence relation
» Parity is an equivalence relation on N,
(x,y) € Parity if x — y is even
An equivalence relation on S partitions S into equivalence classes:
» The equivalence class of s is denoted [s].
» [s]={t:(s,t) € R}
Theorem: Equivalences classes are either equal or disjoint: for all
s,s’ € S, either [s] = [s'] or [s] N [s'] = 0.
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Equivalence Relations

» A relation R is an equivalence relation if it is reflexive,
symmetric, and transitive

» = is an equivalence relation
» Parity is an equivalence relation on N,
(x,y) € Parity if x — y is even
An equivalence relation on S partitions S into equivalence classes:
» The equivalence class of s is denoted [s].

» [s]={t:(s,t) € R}
Theorem: Equivalences classes are either equal or disjoint: for all
s,s’ € S, either [s] = [s'] or [s] N [s'] = 0.

» What are the equivalence classes of the parity relation?
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Transitive Closure

The transitive closure of a relation R is the least relation R* such
that

1. RCR*
2. R* is transitive (so that if (u, v), (v, w) € R*, then so is

(u, w)).
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The transitive closure of a relation R is the least relation R* such
that

1. RCR*
2. R* is transitive (so that if (u, v), (v, w) € R*, then so is
(u, w)).
How do we know that there is a least relation R* with these
properties:

> ‘“least” means that R* must be a subset of any other relation
with these properties;

> that is, if there is a relation R’ such that that R C R’ and R’
is transitive, then R* C R’.
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Transitive Closure
The transitive closure of a relation R is the least relation R* such

that
1. RCR*
2. R* is transitive (so that if (u, v), (v, w) € R*, then so is
(u, w)).
How do we know that there is a least relation R* with these
properties:

> ‘“least” means that R* must be a subset of any other relation
with these properties;
» that is, if there is a relation R’ such that that R C R’ and R’
is transitive, then R* C R’.
Take R* to be the intersection of all the transitive relations that
contain R.
» We must check that the intersection contains R and is
transitive.

Clearly R* is a subset of any transtive relation R’ that contains R.
12 /14



Example: Suppose R = {(1,2),(2,3),(1,4)}.

» R*={(1,2),(1,3),(2,3),(1,4)}

» we need to add (1, 3), because (1,2),(2,3) € R
Note that we don’t need to add (2,4).

» If (2,1), (1,4) were in R, then we'd need (2,4)

» (1,2), (1,4) doesn't force us to add anything (it doesn't fit the
“pattern” of transitivity.

Note that if R is already transitive, then R* = R.
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An Inductive Definition of Transitive Closure

Given a relation R on S, here is a constructive inductive definition
of transitive closure. Define Ry, Ry, ... inductively:

> Let Rp = R.
» Let Rpy1 = Ry U{(s,t) : Ju e S((s,u) € R, (u,t) € Ry)}.
> Let R/ = U R,.
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An Inductive Definition of Transitive Closure

Given a relation R on S, here is a constructive inductive definition
of transitive closure. Define Ry, Ry, ... inductively:

» Let Ry = R.
» Let Rpy1 = Ry U{(s,t) : Ju e S((s,u) € R, (u,t) € Ry)}.
> Let R = U2 4Ry.
Theorem: R’ is the transitive closure of R.
What do you have to prove to show that this is true?
» RC R
» R’ is transitive
» If R” is transitive and R C R”, then R' C R” (i.e., R’ is the

smallest transitive set that contains R).

This will be homework.
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Partial Orders

A relation is strict partial order if it is irreflexive and transitive.

» < and > are strict partial orders
A relation is weak partial order if it is reflexive, transitive, and
antisymmetric

» < and > are weak partial orders
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