Relations

- Cartesian product:

$$
\begin{aligned}
S \times & T=\{(s, t): s \in S, t \in T\} \\
& \{1,2,3\} \times\{3,4\}= \\
& \{(1,3),(2,3),(3,3),(1,4),(2,4),(3,4)\} \\
& |S \times T|=|S| \times|T| .
\end{aligned}
$$

- A relation on S and T (or, on $S \times T$) is a subset of $S \times T$
- A relation on S is a subset of $S \times S$
- Taller than is a relation on people: (Joe,Sam) is in the Taller than relation if Joe is Taller than Sam
- Greater than is a relation on \boldsymbol{R} (the real numbers):

$$
L=\{(x, y): x, y \in R, x>y\}
$$

- Divisibility is a relation on N (the natural numbers):

$$
D=\{(x, y): x, y \in \boldsymbol{N}, x \mid y\}
$$

Notation: the book writes $a R b$ to denote that the pair $(a, b) \in R$. The latter notation is more standard, and that's what I will use.

- You can use either one.

Functions; Composing and Inverting Relations

A function $f: A \rightarrow B$ is just a relation where for all $a \in A$, there is a unique $b \in B$ such that $(a, b) \in R$.
If R is a relation on $A \times B$, then R^{-1} is a relation on $B \times A$:

$$
(a, b) \in R \text { iff }(b, a) \in R^{-1}
$$

- This generalizes the definition of inverse function

Functions; Composing and Inverting Relations

A function $f: A \rightarrow B$ is just a relation where for all $a \in A$, there is a unique $b \in B$ such that $(a, b) \in R$.
If R is a relation on $A \times B$, then R^{-1} is a relation on $B \times A$:

$$
(a, b) \in R \text { iff }(b, a) \in R^{-1}
$$

- This generalizes the definition of inverse function If R is a relation on $B \times C$ and S is a relation on $A \times B$, then $R \circ S$ is a relation on $A \times C$:

$$
(a, c) \in R \circ S \text { iff } \exists b((a, b) \in S \text { and }(b, c) \in R)
$$

- Note the order of R and S on the right-hand side
- This is what we need to generalize the definition of function composition:
- If $f: A \rightarrow B, g: B \rightarrow C$, then $g \circ f: A \rightarrow C$ (note that it's $g \circ f, \operatorname{not} f \circ c$)
- $g \circ f(a)=g(f(a))=c$ if there exists a b such that $f(a)=b$ and $g(b)=c$ (i.e., $(a, b) \in f$ and $(b, c) \in g)$.

Example: If $R=\{(n, n+1): n \in \boldsymbol{N}\}$, then what's $R \circ R$?

Example: If $R=\{(n, n+1): n \in \boldsymbol{N}\}$, then what's $R \circ R$?

- $R \circ R=\{(n, n+2): n \in \boldsymbol{N}\}$.
- How do you prove this?

Example: If $R=\{(n, n+1): n \in \boldsymbol{N}\}$, then what's $R \circ R$?

- $R \circ R=\{(n, n+2): n \in \boldsymbol{N}\}$.
- How do you prove this?

Let $S=\{(n, n+2): n \in \boldsymbol{N}\}$. We need to show that $R \circ R \subseteq S$ and $S \subseteq R \circ R$:

Example: If $R=\{(n, n+1): n \in \boldsymbol{N}\}$, then what's $R \circ R$?

- $R \circ R=\{(n, n+2): n \in \boldsymbol{N}\}$.
- How do you prove this?

Let $S=\{(n, n+2): n \in \boldsymbol{N}\}$. We need to show that $R \circ R \subseteq S$ and $S \subseteq R \circ R$:

- Suppose that $x \in S$. Then $x=(n, n+2)$ for some n.
- Note that $(n, n+1) \in R$ and $(n+1, n+2) \in R$.
- Thus, by definition $(n, n+2) \in R \circ R$; that is, $x \in R \circ R$.

This shows that $S \subseteq R \circ R$.

Example: If $R=\{(n, n+1): n \in \boldsymbol{N}\}$, then what's $R \circ R$?

- $R \circ R=\{(n, n+2): n \in \boldsymbol{N}\}$.
- How do you prove this?

Let $S=\{(n, n+2): n \in \mathbb{N}\}$. We need to show that $R \circ R \subseteq S$ and $S \subseteq R \circ R$:

- Suppose that $x \in S$. Then $x=(n, n+2)$ for some n.
- Note that $(n, n+1) \in R$ and $(n+1, n+2) \in R$.
- Thus, by definition $(n, n+2) \in R \circ R$; that is, $x \in R \circ R$.

This shows that $S \subseteq R \circ R$.
The other direction works essentially the same way:

- Suppose that $(a, c) \in R \circ R$.
- Then (by definition), there is a b such that $(a, b) \in R$ and $(b, c) \in R$.
- Thus, $b=a+1$ and $c=b+1=a+2$.
- Thus $(a, c)=(a, a+2) \in S$.

This shows that $R \circ R \subseteq S$.

Graphs

A graph consists of nodes and edges between nodes.
A directed graph (digraph) is one where the edges have a direction, usually denoted with an arrow.

Graphs come up everywhere.

- We can view the internet as a graph (in many ways)
- who is connected to whom
- Web search views web pages as a graph
- who points to whom
- Niche graphs (Ecology):
- The vertices are species
- Two vertices are connected by an edge if they compete (use the same food resources, etc.)
Niche graphs give a visual representation of competitiveness.
- Influence Graphs
- The vertices are people
- There is an edge from a to b if a influences b Influence graphs give a visual representation of power structure.

There are lots of other examples in all fields...

Terminology and Notation

An undirected graph G is a pair (V, E), where V is a set of vertices or nodes and E is a set of edges or branches; an edge is a set $\left\{v, v^{\prime}\right\}$ of two not necessarily distinct vertices (i.e., $v, v^{\prime} \in V$).

- We sometimes write $G(V, E)$ instead of G
- We sometimes write $V(G)$ and $E(G)$ if we want to emphasize the graph that the vertices and edges come from.

Terminology and Notation

An undirected graph G is a pair (V, E), where V is a set of vertices or nodes and E is a set of edges or branches; an edge is a set $\left\{v, v^{\prime}\right\}$ of two not necessarily distinct vertices (i.e., $v, v^{\prime} \in V$).

- We sometimes write $G(V, E)$ instead of G
- We sometimes write $V(G)$ and $E(G)$ if we want to emphasize the graph that the vertices and edges come from.
A digraph is a pair (V, E) where E is a set of directed edges
- A directed edge is a pair $\left(v, v^{\prime}\right)$, where $v, v^{\prime} \in G$
- The order matters!

Walks, Paths, and Cycles

- A walk in a graph G is an alternating sequence of vertices and edges, starting and ending with a vertex, where, for every edge (u, v) on the walk, u is the preceding vertex and v is the following vertex.

Walks, Paths, and Cycles

- A walk in a graph G is an alternating sequence of vertices and edges, starting and ending with a vertex, where, for every edge (u, v) on the walk, u is the preceding vertex and v is the following vertex.
- E.g., 1 (1,3), 3, (3,8), 8

Walks, Paths, and Cycles

- A walk in a graph G is an alternating sequence of vertices and edges, starting and ending with a vertex, where, for every edge (u, v) on the walk, u is the preceding vertex and v is the following vertex.
- E.g., 1 (1,3), 3, (3,8), 8
- Yuck! (The vertices are redundant)
- It's more standard to leave them out; the text includes them
- The length of a walk is the number of vertices -1
- A path is a walk where all the vertices are different
- A cycle is a walk of positive length where all vertices are distinct except for the first and last one

Graphs and Relations

Given a relation R on $S \times T$, we can represent it by the directed graph $G(V, E)$, where

- $V=S \cup T$ and
- $E=\{(s, t):(s, t) \in R\}$

Example: We can represent the $<$ relation on $\{0,1,2,3,4\}$ graphically.

Various Properties of Relations and Graphs

- A relation R on S is reflexive if $(x, x) \in R$ for all $x \in S$.
- \leq is reflexive; $<$ is not

Various Properties of Relations and Graphs

- A relation R on S is reflexive if $(x, x) \in R$ for all $x \in S$.
- \leq is reflexive; $<$ is not
- A relation R on S is irreflexive if $(x, x) \notin R$ for all $x \in S$.
- < is irreflexive; \leq is not

Various Properties of Relations and Graphs

- A relation R on S is reflexive if $(x, x) \in R$ for all $x \in S$.
- \leq is reflexive; $<$ is not
- A relation R on S is irreflexive if $(x, x) \notin R$ for all $x \in S$.
- < is irreflexive; \leq is not
- A relation R on S is symmetric if $(x, y) \in R$ implies $(y, x) \in R$.
- "sibling-of" is symmetric (what about "sister of")
- \leq is not symmetric

Various Properties of Relations and Graphs

- A relation R on S is reflexive if $(x, x) \in R$ for all $x \in S$.
- \leq is reflexive; $<$ is not
- A relation R on S is irreflexive if $(x, x) \notin R$ for all $x \in S$.
- < is irreflexive; \leq is not
- A relation R on S is symmetric if $(x, y) \in R$ implies $(y, x) \in R$.
- "sibling-of" is symmetric (what about "sister of")
- \leq is not symmetric
- A relation R on S is asymmetric if $(x, y) \in R$ implies $(y, x) \notin R$.
- < and $>$ are asymmetric
- \leq and \geq are not

Various Properties of Relations and Graphs

- A relation R on S is reflexive if $(x, x) \in R$ for all $x \in S$.
- \leq is reflexive; $<$ is not
- A relation R on S is irreflexive if $(x, x) \notin R$ for all $x \in S$.
- < is irreflexive; \leq is not
- A relation R on S is symmetric if $(x, y) \in R$ implies $(y, x) \in R$.
- "sibling-of" is symmetric (what about "sister of")
- \leq is not symmetric
- A relation R on S is asymmetric if $(x, y) \in R$ implies $(y, x) \notin R$.
- < and $>$ are asymmetric
- \leq and \geq are not
- A relation R on S is antisymmetric if $(x, y) \in R$ and $x \neq y$ implies $(y, x) \notin R$.
- \leq and \geq are antisymmetric

Various Properties of Relations and Graphs

- A relation R on S is reflexive if $(x, x) \in R$ for all $x \in S$.
- \leq is reflexive; $<$ is not
- A relation R on S is irreflexive if $(x, x) \notin R$ for all $x \in S$.
- < is irreflexive; \leq is not
- A relation R on S is symmetric if $(x, y) \in R$ implies $(y, x) \in R$.
- "sibling-of" is symmetric (what about "sister of")
- \leq is not symmetric
- A relation R on S is asymmetric if $(x, y) \in R$ implies $(y, x) \notin R$.
- < and $>$ are asymmetric
- \leq and \geq are not
- A relation R on S is antisymmetric if $(x, y) \in R$ and $x \neq y$ implies $(y, x) \notin R$.
- \leq and \geq are antisymmetric
- A relation R on S is transitive if $(x, y) \in R$ and $(y, z) \in R$ implies $(x, z) \in R$.
- $\leq,<, \geq,>$ are all transitive;
- "parent-of" is not transitive; "ancestor-of" is

How does the graphical representation show that a graph is

- reflexive?

How does the graphical representation show that a graph is

- reflexive?

How does the graphical representation show that a graph is

- reflexive?
- symmetric?

How does the graphical representation show that a graph is

- reflexive?
- symmetric?

How does the graphical representation show that a graph is

- reflexive?
- symmetric?

- transitive?

How does the graphical representation show that a graph is

- reflexive?
- symmetric?
- transitive?

Equivalence Relations

- A relation R is an equivalence relation if it is reflexive, symmetric, and transitive
- = is an equivalence relation
- Parity is an equivalence relation on \boldsymbol{N}; $(x, y) \in$ Parity if $x-y$ is even

Equivalence Relations

- A relation R is an equivalence relation if it is reflexive, symmetric, and transitive
- = is an equivalence relation
- Parity is an equivalence relation on \boldsymbol{N}; $(x, y) \in$ Parity if $x-y$ is even

An equivalence relation on S partitions S into equivalence classes:

- The equivalence class of s is denoted $[s]$.
- $[s]=\{t:(s, t) \in R\}$

Theorem: Equivalences classes are either equal or disjoint: for all $s, s^{\prime} \in S$, either $[s]=\left[s^{\prime}\right]$ or $[s] \cap\left[s^{\prime}\right]=\emptyset$.

Equivalence Relations

- A relation R is an equivalence relation if it is reflexive, symmetric, and transitive
- = is an equivalence relation
- Parity is an equivalence relation on \boldsymbol{N}; $(x, y) \in$ Parity if $x-y$ is even

An equivalence relation on S partitions S into equivalence classes:

- The equivalence class of s is denoted $[s]$.
- $[s]=\{t:(s, t) \in R\}$

Theorem: Equivalences classes are either equal or disjoint: for all $s, s^{\prime} \in S$, either $[s]=\left[s^{\prime}\right]$ or $[s] \cap\left[s^{\prime}\right]=\emptyset$.

- What are the equivalence classes of the parity relation?

Transitive Closure

The transitive closure of a relation R is the least relation R^{*} such that

1. $R \subseteq R^{*}$
2. R^{*} is transitive (so that if $(u, v),(v, w) \in R^{*}$, then so is (u, w)).

Transitive Closure

The transitive closure of a relation R is the least relation R^{*} such that

1. $R \subseteq R^{*}$
2. R^{*} is transitive (so that if $(u, v),(v, w) \in R^{*}$, then so is $(u, w))$.
How do we know that there is a least relation R^{*} with these properties:

- "least" means that R^{*} must be a subset of any other relation with these properties;
- that is, if there is a relation R^{\prime} such that that $R \subseteq R^{\prime}$ and R^{\prime} is transitive, then $R^{*} \subseteq R^{\prime}$.

Transitive Closure

The transitive closure of a relation R is the least relation R^{*} such that

1. $R \subseteq R^{*}$
2. R^{*} is transitive (so that if $(u, v),(v, w) \in R^{*}$, then so is $(u, w))$.
How do we know that there is a least relation R^{*} with these properties:

- "least" means that R^{*} must be a subset of any other relation with these properties;
- that is, if there is a relation R^{\prime} such that that $R \subseteq R^{\prime}$ and R^{\prime} is transitive, then $R^{*} \subseteq R^{\prime}$.
Take R^{*} to be the intersection of all the transitive relations that contain R.
- We must check that the intersection contains R and is transitive.
Clearly R^{*} is a subset of any transtive relation R^{\prime} that contains R.

Example: Suppose $R=\{(1,2),(2,3),(1,4)\}$.

- $R^{*}=\{(1,2),(1,3),(2,3),(1,4)\}$
- we need to add $(1,3)$, because $(1,2),(2,3) \in R$

Note that we don't need to add $(2,4)$.

- If $(2,1),(1,4)$ were in R, then we'd need $(2,4)$
- $(1,2),(1,4)$ doesn't force us to add anything (it doesn't fit the "pattern" of transitivity.
Note that if R is already transitive, then $R^{*}=R$.

An Inductive Definition of Transitive Closure

Given a relation R on S, here is a constructive inductive definition of transitive closure. Define R_{0}, R_{1}, \ldots inductively:

- Let $R_{0}=R$.
- Let $R_{n+1}=R_{n} \cup\left\{(s, t): \exists u \in S\left((s, u) \in R_{n},(u, t) \in R_{n}\right)\right\}$.
- Let $R^{\prime}=\cup_{n=0}^{\infty} R_{n}$.

An Inductive Definition of Transitive Closure

Given a relation R on S, here is a constructive inductive definition of transitive closure. Define R_{0}, R_{1}, \ldots inductively:

- Let $R_{0}=R$.
- Let $R_{n+1}=R_{n} \cup\left\{(s, t): \exists u \in S\left((s, u) \in R_{n},(u, t) \in R_{n}\right)\right\}$.
- Let $R^{\prime}=\cup_{n=0}^{\infty} R_{n}$.

Theorem: R^{\prime} is the transitive closure of R.
What do you have to prove to show that this is true?

An Inductive Definition of Transitive Closure

Given a relation R on S, here is a constructive inductive definition of transitive closure. Define R_{0}, R_{1}, \ldots inductively:

- Let $R_{0}=R$.
- Let $R_{n+1}=R_{n} \cup\left\{(s, t): \exists u \in S\left((s, u) \in R_{n},(u, t) \in R_{n}\right)\right\}$.
- Let $R^{\prime}=\cup_{n=0}^{\infty} R_{n}$.

Theorem: R^{\prime} is the transitive closure of R.
What do you have to prove to show that this is true?

- $R \subseteq R^{\prime}$

An Inductive Definition of Transitive Closure

Given a relation R on S, here is a constructive inductive definition of transitive closure. Define R_{0}, R_{1}, \ldots inductively:

- Let $R_{0}=R$.
- Let $R_{n+1}=R_{n} \cup\left\{(s, t): \exists u \in S\left((s, u) \in R_{n},(u, t) \in R_{n}\right)\right\}$.
- Let $R^{\prime}=\cup_{n=0}^{\infty} R_{n}$.

Theorem: R^{\prime} is the transitive closure of R.
What do you have to prove to show that this is true?

- $R \subseteq R^{\prime}$
- R^{\prime} is transitive
- If $R^{\prime \prime}$ is transitive and $R \subseteq R^{\prime \prime}$, then $R^{\prime} \subseteq R^{\prime \prime}$ (i.e., R^{\prime} is the smallest transitive set that contains R).

This will be homework.

Partial Orders

A relation is strict partial order if it is irreflexive and transitive.

- < and $>$ are strict partial orders

A relation is weak partial order if it is reflexive, transitive, and antisymmetric

- \leq and \geq are weak partial orders

