
Relations
I Cartesian product:

S × T = {(s, t) : s ∈ S , t ∈ T}
I {1, 2, 3} × {3, 4} =
{(1, 3), (2, 3), (3, 3), (1, 4), (2, 4), (3, 4)}

I |S × T | = |S | × |T |.
I A relation on S and T (or, on S × T ) is a subset of S × T
I A relation on S is a subset of S × S

I Taller than is a relation on people: (Joe,Sam) is in the Taller
than relation if Joe is Taller than Sam

I Greater than is a relation on IR (the real numbers):

L = {(x , y) : x , y ∈ R, x > y}

I Divisibility is a relation on IN (the natural numbers):

D = {(x , y) : x , y ∈ IN, x |y}

Notation: the book writes a R b to denote that the pair (a, b) ∈ R.
The latter notation is more standard, and that’s what I will use.

I You can use either one.
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Functions; Composing and Inverting Relations
A function f : A→ B is just a relation where for all a ∈ A, there is
a unique b ∈ B such that (a, b) ∈ R.

If R is a relation on A× B, then R−1 is a relation on B × A:

(a, b) ∈ R iff (b, a) ∈ R−1.

I This generalizes the definition of inverse function

If R is a relation on B × C and S is a relation on A× B, then
R ◦ S is a relation on A× C :

(a, c) ∈ R ◦ S iff ∃b((a, b) ∈ S and (b, c) ∈ R).

I Note the order of R and S on the right-hand side
I This is what we need to generalize the definition of function

composition:
I If f : A→ B, g : B → C , then g ◦ f : A→ C (note that it’s

g ◦ f , not f ◦ c)
I g ◦ f (a) = g(f (a)) = c if there exists a b such that f (a) = b

and g(b) = c (i.e., (a, b) ∈ f and (b, c) ∈ g).
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Example: If R = {(n, n + 1) : n ∈ IN}, then what’s R ◦ R?

I R ◦ R = {(n, n + 2) : n ∈ IN}.
I How do you prove this?

Let S = {(n, n + 2) : n ∈ IN}. We need to show that R ◦ R ⊆ S
and S ⊆ R ◦ R:

I Suppose that x ∈ S . Then x = (n, n + 2) for some n.

I Note that (n, n + 1) ∈ R and (n + 1, n + 2) ∈ R.

I Thus, by definition (n, n + 2) ∈ R ◦ R; that is, x ∈ R ◦ R.

This shows that S ⊆ R ◦ R.

The other direction works essentially the same way:

I Suppose that (a, c) ∈ R ◦ R.

I Then (by definition), there is a b such that (a, b) ∈ R and
(b, c) ∈ R.

I Thus, b = a + 1 and c = b + 1 = a + 2.

I Thus (a, c) = (a, a + 2) ∈ S .

This shows that R ◦ R ⊆ S .
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Graphs

A graph consists of nodes and edges between nodes.

A directed graph (digraph) is one where the edges have a
direction, usually denoted with an arrow.
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Graphs come up everywhere.

I We can view the internet as a graph (in many ways)
I who is connected to whom

I Web search views web pages as a graph
I who points to whom

I Niche graphs (Ecology):
I The vertices are species
I Two vertices are connected by an edge if they compete (use

the same food resources, etc.)

Niche graphs give a visual representation of competitiveness.
I Influence Graphs

I The vertices are people
I There is an edge from a to b if a influences b

Influence graphs give a visual representation of power
structure.

There are lots of other examples in all fields . . .
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Terminology and Notation

An undirected graph G is a pair (V ,E ), where V is a set of
vertices or nodes and E is a set of edges or branches; an edge is a
set {v , v ′} of two not necessarily distinct vertices (i.e., v , v ′ ∈ V ).

I We sometimes write G (V ,E ) instead of G

I We sometimes write V (G ) and E (G ) if we want to emphasize
the graph that the vertices and edges come from.

A digraph is a pair (V ,E ) where E is a set of directed edges

I A directed edge is a pair (v , v ′), where v , v ′ ∈ G

I The order matters!
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Walks, Paths, and Cycles

I A walk in a graph G is an alternating sequence of vertices and
edges, starting and ending with a vertex, where, for every
edge (u, v) on the walk, u is the preceding vertex and v is the
following vertex.

I E.g., 1 (1,3), 3, (3,8), 8
I Yuck! (The vertices are redundant)

I It’s more standard to leave them out; the text includes them

I The length of a walk is the number of vertices −1

I A path is a walk where all the vertices are different

I A cycle is a walk of positive length where all vertices are
distinct except for the first and last one
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Graphs and Relations

Given a relation R on S × T , we can represent it by the directed
graph G (V ,E ), where

I V = S ∪ T and

I E = {(s, t) : (s, t) ∈ R}
Example: We can represent the < relation on {0, 1, 2, 3, 4}
graphically.

0 1 2 3 4
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Various Properties of Relations and Graphs
I A relation R on S is reflexive if (x , x) ∈ R for all x ∈ S .

I ≤ is reflexive; < is not

I A relation R on S is irreflexive if (x , x) /∈ R for all x ∈ S .
I < is irreflexive; ≤ is not

I A relation R on S is symmetric if (x , y) ∈ R implies
(y , x) ∈ R.

I “sibling-of” is symmetric (what about “sister of”)
I ≤ is not symmetric

I A relation R on S is asymmetric if (x , y) ∈ R implies
(y , x) /∈ R.

I < and > are asymmetric
I ≤ and ≥ are not

I A relation R on S is antisymmetric if (x , y) ∈ R and x 6= y
implies (y , x) /∈ R.

I ≤ and ≥ are antisymmetric
I A relation R on S is transitive if (x , y) ∈ R and (y , z) ∈ R

implies (x , z) ∈ R.
I ≤, <, ≥, > are all transitive;
I “parent-of” is not transitive; “ancestor-of” is
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How does the graphical representation show that a graph is

I reflexive?

I symmetric?

I transitive?
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Equivalence Relations

I A relation R is an equivalence relation if it is reflexive,
symmetric, and transitive

I = is an equivalence relation
I Parity is an equivalence relation on IN;

(x , y) ∈ Parity if x − y is even

An equivalence relation on S partitions S into equivalence classes:
I The equivalence class of s is denoted [s].

I [s] = {t : (s, t) ∈ R}
Theorem: Equivalences classes are either equal or disjoint: for all
s, s ′ ∈ S , either [s] = [s ′] or [s] ∩ [s ′] = ∅.

I What are the equivalence classes of the parity relation?
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Transitive Closure
The transitive closure of a relation R is the least relation R∗ such
that

1. R ⊆ R∗

2. R∗ is transitive (so that if (u, v), (v ,w) ∈ R∗, then so is
(u,w)).

How do we know that there is a least relation R∗ with these
properties:

I “least” means that R∗ must be a subset of any other relation
with these properties;

I that is, if there is a relation R ′ such that that R ⊆ R ′ and R ′

is transitive, then R∗ ⊆ R ′.

Take R∗ to be the intersection of all the transitive relations that
contain R.

I We must check that the intersection contains R and is
transitive.

Clearly R∗ is a subset of any transtive relation R ′ that contains R.
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Example: Suppose R = {(1, 2), (2, 3), (1, 4)}.
I R∗ = {(1, 2), (1, 3), (2, 3), (1, 4)}
I we need to add (1, 3), because (1, 2), (2, 3) ∈ R

Note that we don’t need to add (2,4).

I If (2,1), (1,4) were in R, then we’d need (2,4)

I (1,2), (1,4) doesn’t force us to add anything (it doesn’t fit the
“pattern” of transitivity.

Note that if R is already transitive, then R∗ = R.
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An Inductive Definition of Transitive Closure

Given a relation R on S , here is a constructive inductive definition
of transitive closure. Define R0,R1, . . . inductively:

I Let R0 = R.

I Let Rn+1 = Rn ∪ {(s, t) : ∃u ∈ S((s, u) ∈ Rn, (u, t) ∈ Rn)}.
I Let R ′ = ∪∞n=0Rn.

Theorem: R ′ is the transitive closure of R.

What do you have to prove to show that this is true?

I R ⊆ R ′

I R ′ is transitive

I If R ′′ is transitive and R ⊆ R ′′, then R ′ ⊆ R ′′ (i.e., R ′ is the
smallest transitive set that contains R).

This will be homework.
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of transitive closure. Define R0,R1, . . . inductively:

I Let R0 = R.

I Let Rn+1 = Rn ∪ {(s, t) : ∃u ∈ S((s, u) ∈ Rn, (u, t) ∈ Rn)}.
I Let R ′ = ∪∞n=0Rn.

Theorem: R ′ is the transitive closure of R.

What do you have to prove to show that this is true?

I R ⊆ R ′

I R ′ is transitive

I If R ′′ is transitive and R ⊆ R ′′, then R ′ ⊆ R ′′ (i.e., R ′ is the
smallest transitive set that contains R).

This will be homework.
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Partial Orders

A relation is strict partial order if it is irreflexive and transitive.

I < and > are strict partial orders

A relation is weak partial order if it is reflexive, transitive, and
antisymmetric

I ≤ and ≥ are weak partial orders
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