
Number Theory

Mathematics is the queen of sciences and number theory
is the queen of mathematics.

– Carl Friedrich Gauss

But why is it computer science?

I It turns out to be critical for cryptography!

No one has yet discovered any warlike purpose to be
served by the theory of numbers or relativity, and it
seems unlikely that anyone will do so for many years.

– G.H. Hardy

1 / 45



Number Theory

Mathematics is the queen of sciences and number theory
is the queen of mathematics.

– Carl Friedrich Gauss

But why is it computer science?

I It turns out to be critical for cryptography!

No one has yet discovered any warlike purpose to be
served by the theory of numbers or relativity, and it
seems unlikely that anyone will do so for many years.

– G.H. Hardy

1 / 45



Number Theory

Mathematics is the queen of sciences and number theory
is the queen of mathematics.

– Carl Friedrich Gauss

But why is it computer science?

I It turns out to be critical for cryptography!

No one has yet discovered any warlike purpose to be
served by the theory of numbers or relativity, and it
seems unlikely that anyone will do so for many years.

– G.H. Hardy

1 / 45



Division
For a, b ∈ Z , a 6= 0, a divides b if there is some c ∈ Z such that
b = ac.

I Notation: a | b
I Examples: 3 | 9, 3 6 | 7

If a | b, then a is a factor of b, b is a multiple of a.

Theorem 1: If a, b, c ∈ Z , then

1. if a | b and a | c then a | (b + c).
2. If a | b then a | (bc)
3. If a | b and b | c then a | c (divisibility is transitive).

Proof: How do you prove this? Use the definition!

I E.g., if a | b and a | c, then, for some d1 and d2,

b = ad1 and c = ad2.

I That means b + c = a(d1 + d2)
I So a | (b + c).

Other parts: homework.

Corollary 1: If a | b and a | c , then a | (mb + nc) for all m, n ∈ Z .
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The division algorithm

Theorem 2: For a ∈ Z and d ∈ N, d > 0, there exist unique
q, r ∈ Z such that a = q · d + r and 0 ≤ r < d .

I r is the remainder when a is divided by d

Notation: r ≡ a (mod d); a mod d = r

Examples:

I Dividing 101 by 11 gives a quotient of 9 and a remainder of 2,
so 101 ≡ 2 (mod 11) and 101 mod 11 = 2.

I Dividing 18 by 6 gives a quotient of 3 and a remainder of 0,
so 18 ≡ 0 (mod 6) and 18 mod 6 = 0.

Proof: The proof is constructive: We define q, r explicitly:
Let q = ba/dc and define r = a− q · d .

I ba/dc is the largest integer ≤ a/d

I it’s what you get when you divide a by d , ignoring the
remainder; r is the remainder
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Now use algebra:
I So a = q · d + r . Clearly q ∈ Z . But why is 0 ≤ r < d?

I By definition of b·c, since q = ba/dc, we have
q ≤ a/d < q + 1.

I Since d > 0, multiplying through by d , we have
qd ≤ a < qd + d .

I subtracting qd , we have 0 ≤ a− qd = r < d

But why are q and r unique?

I Suppose q · d + r = q′ · d + r ′ with q′, r ′ ∈ Z and 0 ≤ r ′ < d .

I Then (q′ − q)d = (r − r ′) with −d < r − r ′ < d .

I The lhs is divisible by d so r = r ′ and we’re done.
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Primes

I If p ∈ N, p > 1 is prime if its only positive factors are 1 and p.
I n ∈ N is composite if n > 1 and n is not prime.

I If n is composite then a | n for some a ∈ N with 1 < a < n
I Can assume that a ≤

√
n.

I Proof: If a|n, then n = ac for some c. If a ≤
√
n, then we are

done. If a >
√
n, then we must have c <

√
n. For if c ≥

√
n,

then ac >
√
n
√
n = n, a contradiction. Thus, c <

√
n, and

c|n, so n has a factor that is at most
√
n.

Primes: 2, 3, 5, 7, 11, 13, . . .
Composites: 4, 6, 8, 9, . . .
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Primality testing
How can we tell if n ∈ N is prime?

The naive approach: check if k | n for every 1 < k < n.
I But at least 10m−1 numbers are ≤ n, if n has m digits

I 1000 numbers less than 1000 (a 4-digit number)
I 1,000,000 less than 1,000,000 (a 7-digit number)

So the algorithm is exponential time!

We can do a little better
I Skip the even numbers
I That saves a factor of 2 −→ not good enough
I Try only primes (Sieve of Eratosthenes)

I Still doesn’t help much

We can do much better:
I There is a polynomial time randomized algorithm

I We will discuss this when we talk about probability
I In 2002, Agarwal, Saxena, and Kayal gave a (nonprobabilistic)

polynomial time algorithm
I Saxena and Kayal were undergrads in 2002!
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The Fundamental Theorem of Arithmetic

Theorem 3: Every natural number n > 1 can be uniquely
represented as a product of primes, written in nondecreasing size.

I Examples: 54 = 2 · 33, 100 = 22 · 52, 15 = 3 · 5.

Proving that that n can be written as a product of primes is easy
(by strong induction):

I Base case: 2 is the product of primes (just 2)
I Inductive step: If n > 2 is prime, we are done. If not, n = ab.

I Must have a < n, b < n.
I By I.H., both a and b can be written as a product of primes
I So n is product of primes

Proving uniqueness is harder.

I We’ll do that in a few days . . .
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An Algorithm for Prime Factorization
Fact: If a is the smallest number > 1 that divides n, then a is
prime.

Proof: By contradiction. (Left to the reader.)

I A multiset is like a set, except repetitions are allowed
I {{2, 2, 3, 3, 5}} is a multiset, not a set

PF(n): A prime factorization procedure

Input: n ∈ N+

Output: PFS - a multiset of n’s prime factors
PFS := ∅
for a = 2 to b

√
nc do

if a | n then PFS := PF(n/a) ∪{{a}} return PFS
if PFS = ∅ then PFS := {{n}} [n is prime]
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Example: PF(7007) = {{7}}∪ PF(1001)
= {{7, 7}}∪ PF(143)
= {{7, 7, 11}}∪ PF(13)
= {{7, 7, 11, 13}}.

9 / 45



The Complexity of Factoring

Algorithm PF runs in exponential time:

I We’re checking every number up to
√
n

Can we do better?

I We don’t know.

I Modern-day cryptography implicitly depends on the fact that
we can’t!

I There is an efficient factoring algorithm using quantum
computing.
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How Many Primes Are There?
Theorem 4: [Euclid] There are infinitely many primes.

Proof: By contradiction.
I Suppose that there are only finitely many primes: p1, . . . , pn.
I Consider q = p1 × · · · × pn + 1
I Clearly q > p1, ..., pn, so it can’t be prime.
I So q must have a prime factor, which must be one of

p1, . . . , pn (since these are the only primes).
I Suppose it is pi .

I Then pi | q and pi | p1 × · · · × pn
I So pi | (q − p1 × · · · × pn); i.e., pi | 1 (Corollary 1)
I Contradiction!

Largest currently-known prime (as of 2/20):
I 282,589,933 − 1: 24,862,048 digits
I Check www.utm.edu/research/primes

Primes of the form 2p − 1 where p is prime are called Mersenne
primes.

I Search for large primes focuses on Mersenne primes
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The distribution of primes
There are quite a few primes out there:

I Roughly one in every log(n) numbers is prime

Formally: let π(n) be the number of primes ≤ n:

Prime Number Theorem: π(n) ∼ n/ log(n); that is,

lim
n→∞

π(n)/(n/ log(n)) = 1

Why is this important?

I Cryptosystems like RSA use a secret key that is the product of
two large (100-digit) primes.

I How do you find two large primes?
I Roughly one of every 100 100-digit numbers is prime
I To find a 100-digit prime;

I Keep choosing odd numbers at random
I Check if they are prime (using fast randomized primality test)
I Keep trying until you find one
I Roughly 100 attempts should do it
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(Some) Open Problems Involving Primes

I Are there infinitely many Mersenne primes?
I Goldbach’s Conjecture: every even number greater than 2 is

the sum of two primes.
I E.g., 6 = 3 + 3, 20 = 17 + 3, 28 = 17 + 11
I This has been checked out to 4× 1018 (as of 2020)
I True for almost all even numbers

I the fraction of even numbers for which it’s true tends to 1

I Every sufficiently large integer (> 1043,000!) is the sum of four
primes

I Two prime numbers that differ by two are twin primes
I E.g.: (3,5), (5,7), (11,13), (17,19), (41,43)
I also 4, 648, 619, 711, 505× 21290000 ± 1!

I largest known as of 2/20

Are there infinitely many twin primes?

All these conjectures are believed to be true, but no one has
proved them.
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Greatest Common Divisor (gcd)
Definition: For a ∈ Z let D(a) = {k ∈ N : k | a}

I D(a) = {divisors of a}.
Claim. |D(a)| <∞ if (and only if) a 6= 0.

Proof: If a 6= 0 and k | a, then 0 < k < a.

Definition: For a, b ∈ Z , CD(a, b) = D(a) ∩ D(b) is the set of
common divisors of a, b.

Definition: The greatest common divisor of a and b is

gcd(a, b) = max(CD(a, b)).

Examples:
I gcd(6, 9) = 3
I gcd(13, 100) = 1
I gcd(6, 45) = 3

Efficient computation of gcd(a, b) lies at the heart of commercial
cryptography.
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Computing the GCD
There is a method for calculating the gcd that goes back to Euclid:

I Recall: if n > m and q divides both n and m, then q divides
n −m and n + m.

Therefore gcd(n,m) = gcd(m, n −m).
I Proof: Show that CD(n,m) = CD(m, n −m); i.e. show that

q divides both n and m iff q divides both m and n −m. (If q
divides n and m, then q divides n−m by the argument above.
If q divides m and n −m, then q divides m + (n −m) = n.)

I This allows us to reduce the gcd computation to a simpler
case.

We can do even better:
I gcd(n,m) = gcd(m, n −m) = gcd(m, n − 2m) = . . .
I keep going as long as n − qm ≥ 0 — bn/mc steps

Consider gcd(6, 45):
I b45/6c = 7; remainder is 3 (45 ≡ 3 (mod 6))
I gcd(6, 45) = gcd(6, 45− 7× 6) = gcd(6, 3) = 3
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We can keep this up this procedure to compute gcd(n1, n2):
I If n1 ≥ n2, write n1 as q1n2 + r1, where 0 ≤ r1 < n2

I q1 = bn1/n2c
I gcd(n1, n2) = gcd(r1, n2)

I Now r1 < n2, so switch their roles:

I n2 = q2r1 + r2, where 0 ≤ r2 < r1
I gcd(r1, n2) = gcd(r1, r2)

I Notice that max(n1, n2) > max(r1, n2) > max(r1, r2)
I Keep going until we have a remainder of 0 (i.e., something of

the form gcd(rk , 0) or (gcd(0, rk))
I This is bound to happen sooner or later
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Euclid’s Algorithm

Input m, n [m, n natural numbers, m ≥ n]
num← m; denom← n [Initialize num and denom]
repeat until denom = 0
q← bnum/denomc
rem← num− (q ∗ denom) [num mod denom = rem]
num← denom [New num]
denom← rem [New denom; note num ≥ denom]

endrepeat
Output num [num = gcd(m, n)]

Example: gcd(84, 33)

Iteration 1: num = 84, denom = 33, q = 2, rem = 18
Iteration 2: num = 33, denom = 18, q = 1, rem = 15
Iteration 3: num = 18, denom = 15, q = 1, rem = 3
Iteration 4: num = 15, denom = 3, q = 5, rem = 0
Iteration 5: num = 3, denom = 0 ⇒ gcd(84, 33) = 3
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Euclid’s Algorithm: Correctness
How do we know this works?

I We need to prove that
(a) the algorithm terminates and
(b) that it correctly computes the gcd

We prove (a) and (b) simultaneously by finding appropriate loop
invariants and using induction:

I Notation: Let numk and denomk be the values of num and
denom at the beginning of the kth iteration.

P(k) has three parts:

(1) 0 < numk+1 + denomk+1 < numk + denomk

(2) 0 ≤ denomk ≤ numk .
(3) gcd(numk , denomk) = gcd(m, n)

I Termination follows from parts (1) and (2): if
numk + denomk decreases and 0 ≤ denomk ≤ numk , then
eventually denomk must hit 0.

I Correctness follows from part (3).
I The induction step is proved by looking at the details of the

loop. 18 / 45



Euclid’s Algorithm: Complexity

Input m, n [m, n natural numbers, m ≥ n]
num← m; denom← n [Initialize num and denom]
repeat until denom = 0
q← bnum/denomc
rem← num− (q ∗ denom)
num← denom [New num]
denom← rem [New denom; note num ≥ denom]

endrepeat
Output num [num = gcd(m, n)]

How many times do we go through the loop in Euclid’s algorithm:

I Best case: Easy. Never!

I Average case: Too hard
I Worst case: Can’t answer this exactly, but we can get a good

upper bound.
I See how fast denom goes down in each iteration.
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Claim: After two iterations, denom is halved:
I Recall num = q ∗ denom + rem. Use denom′ and denom′′ to

denote value of denom after 1 and 2 iterations. Two cases:

1. rem ≤ denom/2 ⇒ denom′ ≤ denom/2 and
denom′′ < denom/2.

2. rem > denom/2. But then num′ = denom, denom′ = rem. At
next iteration, q = 1, and
denom′′ = rem′ = num′ − denom′ < denom/2

I How long until denom is ≤ 1?
I < 2 log2(m) steps!

I After at most 2 log2(m) steps, denom = 0.
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The Extended Euclidean Algorithm
Theorem 5: For a, b ∈ N, not both 0, we can compute s, t ∈ Z
such that

gcd(a, b) = sa + tb.

I Example: gcd(9, 4) = 1 = 1 · 9 + (−2) · 4.

Proof: By strong induction on max(a, b). Suppose without loss of
generality a ≤ b.

I If max(a, b) = 1, then must have b = 1, gcd(a, b) = 1
I gcd(a, b) = 0 · a + 1 · b.

I If max(a, b) > 1, there are three cases:
I a = 0; then gcd(0, b) = b = 0 · a + 1 · b
I a = b; then gcd(a, b) = a = 1 · a + 0 · b
I If 0 < a < b, then gcd(a, b) = gcd(a, b − a). Moreover,

max(a, b) > max(a, b − a). Thus, by IH, we can compute s, t
such that

gcd(a, b) = gcd(a, b − a) = sa + t(b − a) = (s − t)a + tb.

Note: this computation basically follows the “recipe” of Euclid’s
algorithm.
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Example of Extended Euclidean Algorithm

Recall that gcd(84, 33) = gcd(33, 18) = gcd(18, 15) =
gcd(15, 3) = gcd(3, 0) = 3

We work backwards to write 3 as a linear combination of 84 and
33:

3 = 18− 15
[Now 3 is a linear combination of 18 and 15]

= 18− (33− 18)
= 2(18)− 33

[Now 3 is a linear combination of 18 and 33]
= 2(84− 2× 33))− 33
= 2× 84− 5× 33

[Now 3 is a linear combination of 84 and 33]
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Some Consequences

Definition: a and b are relatively prime if gcd(a, b) = 1.

I Example: 4 and 9 are relatively prime.

I Two numbers are relatively prime iff they have no common
prime factors.

Corollary 2: If a and b are relatively prime, then there exist s and
t such that as + bt = 1.

Corollary 3: If gcd(a, b) = 1 and a | bc, then a | c .

Proof:

I Exist s, t ∈ Z such that sa + tb = 1

I Multiply both sides by c : sac + tbc = c

I Since a | bc, a | sac + tbc, so a | c
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I Multiply both sides by c : sac + tbc = c

I Since a | bc, a | sac + tbc, so a | c
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Corollary 4: If p is prime and p | Πn
i=1 ai , then p | ai for some

1 ≤ i ≤ n.

Proof: By induction on n:

I If n = 1: trivial.

Suppose the result holds for n and p | Πn+1
i=1 ai .

I note that p | Πn+1
i=1 ai = (Πn

i=1 ai )an+1.

I If p | an+1 we are done.

I If not, gcd(p, an+1) = 1.

I By Corollary 3, p | Πn
i=1 ai

I By the IH, p | ai for some 1 ≤ i ≤ n.

Corollary 5: If p, q prime, p 6= q, p | n, and q | n, then pq | n.

Proof: Since p | n, then n = pn′.
Since q | n = pn′ and gcd(p, q) = 1, we must have that q | n′ by
Corollary 3, so n′ = n′′q. That means n = pqn′′, so pq | n.
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The Fundamental Theorem of Arithmetic, II
Theorem 3: Every n > 1 can be represented uniquely as a product
of primes, written in nondecreasing size.

Proof: Still need to prove uniqueness. We first prove (by strong
induction on n), that if n = Πr

i=1 pi = Πs
j=1 qj , then

{{p1, . . . , pr}} = {{q1, . . . , qs}}.

I Recall that the {{. . .}} notation denotes multiset
I A multiset counts repetitions, so if
{{p1, . . . , pr}} = {{q1, . . . , qs}}, then r = s.

Base case: Obvious if n = 2.

Inductive step. Suppose OK for n′ < n.
I Suppose that n = Πr

i=1 pi = Πs
j=1 qj .

I p1 | Πs
j=1 qj , so by Corollary 4, p1 | qj for some j .

I But then p1 = qj , since both p1 and qj are prime.
I But then n/p1 = p2 · · · pr = q1 · · · qj−1qj+1 · · · qs
I Result now follows from I.H.
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Modular Arithmetic
Remember: a ≡ b (mod m) means a and b have the same
remainder when divided by m.

I Equivalently: a ≡ b (mod m) iff m | (a− b)

I a is congruent to b mod m

Theorem 7: If a1 ≡ a2 (mod m) and b1 ≡ b2 (mod m), then

(a) (a1 + b1) ≡ (a2 + b2) (mod m)

(b) a1b1 ≡ a2b2 (mod m)

Proof: Suppose
I a1 = c1m + r , a2 = c2m + r
I b1 = d1m + r ′, b2 = d2m + r ′

So
I a1 + b1 = (c1 + d1)m + (r + r ′)
I a2 + b2 = (c2 + d2)m + (r + r ′)

m | ((a1 + b1)− (a2 + b2) = ((c1 + d1)− (c2 + d2))m
I Conclusion: a1 + b1 ≡ a2 + b2 (mod m).
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For multiplication:

I a1b1 = (c1d1m + r ′c1 + rd1)m + rr ′

I a2b2 = (c2d2m + r ′c2 + rd2)m + rr ′

m | (a1b1 − a2b2)

I Conclusion: a1b1 ≡ a2b2 (mod m).

Bottom line: addition and multiplication carry over to the
modular world.

Theorem 8: a ≡ b (mod m) is an equivalence relation on the
integers.

Modular arithmetic has lots of applications.

I Here are four . . .
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Hashing
Problem: How can we efficiently store, retrieve, and delete records
from a large database?

I For example, students records.

Assume, each record has a unique key
I E.g. student ID, Social Security #

Do we keep an array sorted by the key?
I Easy retrieval but difficult insertion and deletion.

How about a table with an entry for every possible key?
I Often infeasible, almost always wasteful.
I There are 1010 possible social security numbers.

Solution: store the records in an array of size N, where N is
somewhat bigger than the expected number of records.

I Store record with id k in location h(k)
I h is the hash function
I Basic hash function: h(k) := k (mod N).

I A collision occurs when h(k1) = h(k2) and k1 6= k2.
I Choose N sufficiently large to minimize collisions

I Lots of techniques for dealing with collisions
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Pseudorandom Sequences

For randomized algorithms we need a random number generator.

I Most languages provide you with a function “rand”.
I There is nothing random about rand!

I It creates an apparently random sequence deterministically
I These are called pseudorandom sequences

A standard technique for creating pseudorandom sequences: the
linear congruential method.

I Choose a modulus m ∈ N+,

I a multiplier a ∈ {2, 3, . . . ,m − 1}, and

I an increment c ∈ Zm = {0, 1, . . . ,m − 1}.
I Choose a seed x0 ∈ Zm

I Typically the time on some internal clock is used

I Compute xn+1 = axn + c (mod m).

Warning: a poorly implemented rand, such as in C, can wreak
havoc on Monte Carlo simulations.

29 / 45



Recall that a linear congruence generator has xn+1 = axn + c
(mod m). Some common choices for a, c , and m:

I m prime, c = 0

I m a power of 2, a odd (often 3 or 5 mod 8)

I c 6= 0, m a power of an odd prime p, a− 1 divisible by p

(See wikipedia article on linear congruential generator for more.)
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ISBN Numbers

Since 1968, most published books have been assigned a 10-digit
ISBN numbers:

I identifies country of publication, publisher, and book itself

All the information is encoded in the first 9 digits

I The 10th digit is used as a parity check

I If the digits are a1, . . . , a10, then we must have

a1 + 2a2 + · · ·+ 9a9 + 10a10 ≡ 0 (mod 11).

I This test always detects errors in single digits and
transposition errors

I Two arbitrary errors may cancel out

Similar parity checks are used in universal product codes (UPC
codes/bar codes) that appear on almost all items

I The numbers are encoded by thicknesses of bars, to make
them machine readable
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Casting out 9s

Notice that a number is equivalent to the sum of its digits mod 9.
This can be used as a way of checking your addition and of doing
mindreading [come to class to hear more . . . ]
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Fermat’s Little Theorem

Theorem 10 (Fermat’s Little Theorem):

(a) If p prime and gcd(p, a) = 1, then ap−1 ≡ 1 (mod p).

(b) For all a ∈ Z , ap ≡ a (mod p).

Proof. Let

A = {1, 2, . . . , p − 1}
B = {1a mod p, 2a mod p, . . . , (p − 1)a mod p}

Claim: A = B.

I 0 /∈ B, since p 6 | ja, so B ⊆ A.
I If i 6= j , then ia mod p 6= ja mod p, so f : A→ B with

f (i) = ia mod p is an injection.
I since p 6 | (j − i)a

I It follows that |A| ≤ |B|.
I Since 0 /∈ B, B ⊆ {0, . . . , p − 1}, and |B| ≥ p − 1, we must

have A = B!
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We’ve just shown that A = B, where

I A = {1, 2, . . . , p − 1}
I B = {1a mod p, 2a mod p, . . . , (p − 1)a mod p}

Therefore,

Πi∈A i ≡ Πi∈B i (mod p)
⇒ (p − 1)! ≡ a(2a) · · · (p − 1)a = (p − 1)! ap−1 (mod p)
⇒ p | (ap−1 − 1)(p − 1)!
⇒ p | (ap−1 − 1) [since gcd(p, (p − 1)!) = 1]
⇒ ap−1 ≡ 1 (mod p)
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It follows that ap ≡ a (mod p)

I This is true even if gcd(p, a) 6= 1; i.e., if p | a
Why is this being taught in a CS course?
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Private Key Cryptography

Alice (aka A) wants to send an encrypted message to Bob (aka B).

I A and B might share a private key known only to them.

I The same key serves for encryption and decryption.

I Example: Caesar’s cipher f (m) = m + 3 mod 26
(shift each letter by three)

I WKH EXWOHU GLG LW
I THE BUTLER DID IT

This particular cryptosystem is very easy to solve

I Idea: look for common letters (E, A, T, S)
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One Time Pads

Some private key systems are completely immune to cryptanalysis:

I A and B share the only two copies of a long list of random
integers si for i = 1, . . . ,N.

I A sends B the message {mi}ni=1 encrypted as:

ci = (mi + si ) mod 26

I B decrypts A’s message by computing ci − si mod 26.

The good news: bulletproof cryptography
The bad news: horrible for e-commerce

I How do random users exchange the pad?
I To some extent you can simulate this using a (deterministic)

random number generator
I A and B just have to share the seed

I But all this is still pretty useless if you want to use encryption
for security on the internet
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Public Key Cryptography
Idea of public key cryptography (Diffie-Hellman)

I Everyone’s encryption scheme is posted publicly
I e.g. in a “telephone book”

I If A wants to send an encoded message to B, she looks up B’s
public key (i.e., B’s encryption algorithm) in the telephone
book

I But only B has the decryption key corresponding to his public
key

BIG advantage: A need not know nor trust B.

There seems to be a problem though:
I If we publish the encryption key, won’t everyone be able to

decrypt?

Key observation: decrypting might be too hard, unless you know
the key

I Computing f −1 could be much harder than computing f

Can we find an (f , f −1) pair for which this is true?
I Yes, by using number theory!
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RSA: Key Generation
Generating encryption/decryption keys

I Choose two very large (hundreds of digits) primes p, q.
I This is done using probabilistic primality testing
I Choose a random large number and check if it is prime
I By the prime number theorem, there are lots of primes out

there

I Let n = pq.
I Choose e ∈ N relatively prime to (p − 1)(q − 1). Here’s how:

I Choose e1, e2 prime and slightly greater than
√
n

I using fast primality testing again
I One must be relatively prime to (p − 1)(q − 1)

I Otherwise e1e2 | (p − 1)(q − 1)

I Find out which one using Euclid’s algorithm
I Compute d , the inverse of e modulo (p − 1)(q − 1).

I Can do this using extended Euclidean algorithm
I Find d , s such that de + s(p − 1)(q − 1) = 1.

I Publish n and e (that’s your public key)

I Keep the decryption key d to yourself.
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RSA: Sending encrypted messages

How does someone send you a message?

I The message is divided into blocks each represented as a
number M between 0 and n. To encrypt M, send

C = Me mod n.

I Need to use fast exponentiation (2 log(n) multiplications) to
do this efficiently

Example: Encrypt “stop” using e = 13 and n = 2537:

I s t o p ↔ 18 19 14 15 ↔ 1819 1415

I 181913 mod 2537 = 2081 and
141513 mod 2537 = 2182 so

I 2081 2182 is the encrypted message.

I We did not need to know p = 43, q = 59 for that.
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Decryption
How do you decrypt a message?

I Claim: Med ≡ M (mod n)
I So, to decrypt, raise the encrypted message (Me) to power d
I Key point: the receiver knows d (but no one else does)
I That’s because (we believe that) given n and e, computing d

is hard, because factoring n is hard.

Why is this right?

I Recall that ed ≡ 1 (mod (p − 1)(q − 1))

I By Fermat’s Little Theorem, if gcd(p,M) = 1, then
Med ≡ M (mod p)

I Since ed = c(p − 1) + 1, so
Med = Mc(p−1+1 = (Mp−1)cM ≡ M (mod p).

I This is also true if gcd(p,M) 6= 1 (i.e., if p|M)

I Similarly Med ≡ M (mod q).
I So p|(Med −M), q|(Med −M)

I by Collary 5, pq|(Med −M)

I So Med ≡ M (mod n) (since n = pq)
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Digital Signatures

How can I send you a message in such a way that you’re convinced
it came from me (and can convince others).

I Want an analogue of a “certified” signature

Cool observation:
I To sign a message M, send Md (mod n)

I where (n, e) is my public key

I Recipient (and anyone else) can compute (Md)e ≡ M
(mod n), since M is public

I No one else could have sent this message, since no one else
knows d .
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Security is Subtle
There are lots of ways of “misapplying” RSA, even assuming that
factoring is hard.

I The public key n = pq, the product of two large primes
I How do you find the primes?

I Guess a big odd number n1, check if it’s prime
I If not, try n1 + 2, then n1 + 4, . . .
I Within roughly log(n1) steps, you should find a prime;

I How do you find the second prime?
I Guess a big odd number n2, check if it’s prime
I . . .

I Suppose, instead, you started with the first prime (call it p),
and checked p + 2, p + 4, p + 6, . . . , until you found another
prime q, and used that.

I Is that a good idea? NO!!!

If n = pq, then p is the first prime less than
√
n, and q is the first

prime greater than
√
n.

I You can find both easily!
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How Secure is RSA?
The security of RSA depends on the hardness of factoring.

I Peter Shor (now at MIT) showed in 1994 that factoring can
be done in polynomial time on a quantum computer

I We don’t yet have quantum computers powerful enough to
factor large numbers

I But one day we might

But even without using quantum computers, we may not be safe:

An international team of French and U.S.
researchers factored the largest RSA key size ever
computed . . . The researchers successfully factored
RSA-240, an RSA key with 240 decimal digits and a
size of 795 bits, and a same-sized discrete logarithm.
The researchers used the Number Field Sieve
algorithm, and the total computation time for
achieving these records was approximately 4,000
core-years . . . – Dec. 2019
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More to Explore

If you like number theory, consider taking

I MATH 3320: Introduction to Number Theory

If you’re interested in cryptography, try

I CS 4830: Introduction to Cryptography

For a brief introduction to some current number theory, check out
http://homepages.umflint.edu/~mclemanc/Files/

McLemanCoolestNumbers.pdf

I The Ten Coolest Numbers

I thanks to Rob Tirrell for pointing this out
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