
CS2802: Discrete Structures - Honors

Welcome to the class!
I You can find lots of course material on the course website:

http://www.cs.cornell.edu/courses/cs2802/2020fa/
I Pay particular attention to course policies.
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Discrete Structures

wallippo.com



Continuous Structures
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• discrete: individually separate and distinct

• discreet

– careful and circumspect in one’s speech or actions, especially
in order to avoid causing o↵ense or to gain an advantage.

– intentionally unobtrusive.
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Things we can count with the integers

ser4kids.com



Things we can count with the integers

clipartpanda.com



Prime Numbers

A number with exactly two divisors:
1 and itself

2, 3, 5, 7, 11, 13, 17...



Prime
Numbers
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Euclid's Proof of In/nitude of Primes

(~300BC)
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Euclid's Proof of In/nitude of Primes

● Suppose there is a /nite number of primes
● Then there is a largest prime, p
● Consider n = (1 × 2 × 3 × ... × p) + 1

● n cannot be prime (p is the largest)
● Therefore it has a (prime) divisor < n

● But no number from 2 to p divides n
● So n has a prime divisor greater than p

Contradiction!!!    



Discrete Structures

● Number theory
● Proof systems
● Sets, functions, relations
● Counting and probability



Bridges of Königsberg

Braun & Hogenberg, “Civitates Orbis Terrarum”, Cologne 1585. Photoshopped to clean up right side and add 7th bridge.



Bridges of Königsberg

Is there a city tour that crosses
each bridge exactly once?

Braun & Hogenberg, “Civitates Orbis Terrarum”, Cologne 1585. Photoshopped to clean up right side and add 7th bridge.



Bridges of Königsberg

Leonhard Euler
(1707-1783)

Braun & Hogenberg, “Civitates Orbis Terrarum”, Cologne 1585. Photoshopped to clean up right side and add 7th bridge.
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Bridges of Königsberg
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D

Enter by new bridge,
Leave by new bridge

Braun & Hogenberg, “Civitates Orbis Terrarum”, Cologne 1585. Photoshopped to clean up right side and add 7th bridge.



Bridges of Königsberg

B

A

C

D

Odd # of bridges
to each landmass
⇒ no solution!

Braun & Hogenberg, “Civitates Orbis Terrarum”, Cologne 1585. Photoshopped to clean up right side and add 7th bridge.



Bridges of Königsberg

● Cross each bridge once: Euler Path
– Easy for a computer to calculate

● Visit each landmass once: Hamiltonian Path
– Probably very hard for a computer to calculate
– If you can /nd an eBcient solution, you will get $1M 
and undying fame (answers “P = NP?”)

– (Will also break modern crypto, collapse the banking 
system, revolutionize automated mathematics and 
science, bring about world peace...)



You'll also be terri/c at Minesweeper

baslerweb.com



Discrete Structures

● Number theory
● Proof systems
● Sets, functions, relations
● Counting and probability
● Graph theory
● Models of computation, automata, complexity
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Discrete Structures

● Number theory
● Proof systems
● Sets, functions, relations
● Counting and probability
● Graph theory
● Models of computation, automata, complexity
● Logic
● Decidability, computability



warrenphotographic.co.uk, auntiedogmasgardenspot.wordpress.com



Course Policies: Highlights
I I would like this course to be as interactive as possible

I Please ask lots of questions!
I Use the hand-raising feature on zoom (or just ask, if I don’t

notice your hand)
I Posting questions on chat is OK, but I don’t always notice

I Please turn on our video, unless you have bandwidth problems!

I There will be homework every week (including this week)
I You can talk to anyone you like about the homework

I friends, TAs, me, . . .

I But you MUST write up your homework alone

I There will probably be two prelims and a final
I format TBA

I There may be recitations sections

I The text (Mathematics for Computer Science by Eric
Lehmann, Albert Meyer, and Tom Leighton) is available for
free online

I I’ll say more about CS 2802 vs. CS 2800 shortly
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So what’s “Discrete Structures” all about anyway?

I The following slides are largely taken from Sid Chaudhuri,
with thanks.
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CS 2802 vs. CS 2800
All of the above applies to both CS 2800 and CS 2802

I Both CS 2802 and CS 2800 cover essentially the same
material

So how do they differ?
I CS 2802 is an honors version of CS 2800. That means:

I It will cover material in more depth
I It will cover a few extra topics
I You will be expected to be able to read the text and absorb

some material on your own.
I There will be less time on straightforward exercises.

I Although both courses will courses will focus on writing proofs

I Most people will find the homework in CS 2802 harder
I Note that there is already homework (due next Tuesday!)

I Check the course website

I The courses will stay in synch up to the end of the add period
(Sept. 16), and probably well beyond, to make it easy to
transfer from CS 2802 to CS 2800
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This is the third time that CS 2802 is being taught.
I Students seem to have really enjoyed it, despite the extra

difficulty
I One important benefit: smaller class with lots more interaction
I I’d like to continue that spirit!

I It’s still a work in progress
I Changes will be made this year in light of COVID-19

I Online classes
I (Mainly) online office hours
I Recitation?
I Take home prelim/final?

I Feedback and suggestions are welcome!
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Three more “policy/bureaucracy” issues:
I Grading:

I I do not curve grades, but I do have to convert from number
grades to letter grades

I In CS2800, I set the course mean to be on the border between
B and B+.

I I expect it to be slightly somewhat higher for CS2802 (last
year it was on the border between B+ and A-).

I Location: For scheduling recitations, it’s useful for me to
know what time zone you are in. Fill in the spreadsheet at

(the link is also on the course homepage).
I Please do this as soon as possible.

I There will be CIS partner finding social event hosted by WICC
(Women in Compting at Cornell), but open to all majors and
gender identities.

I It’s on 9/2/2020 (next Tuesday)
I register at https://tinyurl.com/yx8rcnrf

6 / 47



Three more “policy/bureaucracy” issues:
I Grading:

I I do not curve grades, but I do have to convert from number
grades to letter grades

I In CS2800, I set the course mean to be on the border between
B and B+.

I I expect it to be slightly somewhat higher for CS2802 (last
year it was on the border between B+ and A-).

I Location: For scheduling recitations, it’s useful for me to
know what time zone you are in. Fill in the spreadsheet at

(the link is also on the course homepage).
I Please do this as soon as possible.

I There will be CIS partner finding social event hosted by WICC
(Women in Compting at Cornell), but open to all majors and
gender identities.

I It’s on 9/2/2020 (next Tuesday)
I register at https://tinyurl.com/yx8rcnrf

6 / 47



Three more “policy/bureaucracy” issues:
I Grading:

I I do not curve grades, but I do have to convert from number
grades to letter grades

I In CS2800, I set the course mean to be on the border between
B and B+.

I I expect it to be slightly somewhat higher for CS2802 (last
year it was on the border between B+ and A-).

I Location: For scheduling recitations, it’s useful for me to
know what time zone you are in. Fill in the spreadsheet at

(the link is also on the course homepage).
I Please do this as soon as possible.

I There will be CIS partner finding social event hosted by WICC
(Women in Compting at Cornell), but open to all majors and
gender identities.

I It’s on 9/2/2020 (next Tuesday)
I register at https://tinyurl.com/yx8rcnrf

6 / 47



Proofs

One running theme of the course:

I How to prove things

I How to write good proofs

That’s what we’ll be starting with.

7 / 47



What’s a proof?

For our purposes, a proof is a chain of logical deductions, leading
to the proposition in question (i.e., the thing you want to prove)
from a base set of axioms (i.e., things you can assume without
proving them).

I We’ll later study axiomatic systems for deriving statements
written in a formal logic, but when we talk about writing
proofs in this course, we mean proofs that are largely English
sentences.

So what counts as a “legal” chain of logical deductions? How big
a step can you take?

I It’s largely in the eye of the beholder

I You need to convince the graders that you’ve understood
what’s going on and haven’t missed any essential details.
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We start with a few standard proof techniques:

1. Proving implications (using a direct proof)

2. Proving implications by contrapositive (indirect proofs)

3. Proving if and only if

4. Proof by cases

5. Proof by contradiction (indirect proofs)
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Proving Implications

Suppose that we want to prove an implication of the form P ⇒ Q

I Read this as “If P is true then Q is true”.

So you can assume P, and the prove Q using the fact that P is
true in your proof.
Structure of Proof:

Assume P
. . .
Therefore Q.

10 / 47



Example: If n is odd, then so is n2.
How do we even start the proof?

I We need a formal definition of “odd”!

Proof: Assume that n is odd.
Since n is odd, n = 2m + 1 for some integer m.
Then n2 = 4m2 + 4m + 1 = 2(2m2 + 2m) + 1.
Therefore n2 has the form 2m′ + 1 (where m′ = 2m2 + 2m), and
must be odd.

The proof is trivial, but there are two key points:

I To prove the result carefully, you need a formal definition of
odd.

I It has the right “structure”.
I The marks the end of a proof.
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Proof by Contradiction:

Sometimes the best way to prove P ⇒ Q is by contradiction:

I Show if Q is false, then P is also false (i.e., ¬Q ⇒ ¬P).
I In general P ⇒ Q is equivalent to ¬Q ⇒ ¬P.

I ¬Q ⇒ ¬P is called the contrapositive of P ⇒ Q.

Example: If n2 is odd, then so is n.

Proof: Suppose that n2 is odd and (by way of contradiction) that
n is not odd. Then it must be even.

I Why? How would you prove this formally?

Thus, n = 2k for some k. This means that n2 = 4k2 = 2(2k2), so
n2 is even. - Contradiction

Therefore if n2 is odd, then so is n.

12 / 47



Proof by Contradiction:

Sometimes the best way to prove P ⇒ Q is by contradiction:

I Show if Q is false, then P is also false (i.e., ¬Q ⇒ ¬P).
I In general P ⇒ Q is equivalent to ¬Q ⇒ ¬P.

I ¬Q ⇒ ¬P is called the contrapositive of P ⇒ Q.

Example: If n2 is odd, then so is n.

Proof: Suppose that n2 is odd and (by way of contradiction) that
n is not odd. Then it must be even.

I Why? How would you prove this formally?

Thus, n = 2k for some k. This means that n2 = 4k2 = 2(2k2), so
n2 is even. - Contradiction

Therefore if n2 is odd, then so is n.

12 / 47



Proof by Contradiction:

Sometimes the best way to prove P ⇒ Q is by contradiction:

I Show if Q is false, then P is also false (i.e., ¬Q ⇒ ¬P).
I In general P ⇒ Q is equivalent to ¬Q ⇒ ¬P.

I ¬Q ⇒ ¬P is called the contrapositive of P ⇒ Q.

Example: If n2 is odd, then so is n.

Proof: Suppose that n2 is odd and (by way of contradiction) that
n is not odd. Then it must be even.

I Why? How would you prove this formally?

Thus, n = 2k for some k. This means that n2 = 4k2 = 2(2k2), so
n2 is even. - Contradiction

Therefore if n2 is odd, then so is n.

12 / 47



Theorem:
√

2 is irrational.
Proof: By contradiction. Suppose that

√
2 is rational. Then√

2 = a/b for some a, b ∈ IN+. We can assume that a/b is in
lowest terms.

I Therefore, a and b can’t both be even.

Squaring both sides, we get

2 = a2/b2

Thus, a2 = 2b2, so a2 is even. This means that a must be even.

I Why? What does this follow from?

That means that a = 2c for some integer c . Then a2 = 4c2.

Thus, 4c2 = 2b2, so b2 = 2c2. This means that b2 is even, and
hence so is b.

Contradiction!

Thus,
√

2 must be irrational.
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Proving iff (if and only if)

Sometimes you want to prove P ⇔ Q. This is equivalent to
(P ⇒ Q) ∧ (Q ⇒ P).

I One approach: prove P ⇒ Q and Q ⇒ P separately, as
discussed above.

I Another approach: construct a chain of iffs:

P
iff P1

. . .
iff Pn

iff Q

See example in text.

Make sure you put in the iffs! Don’t just write down a sequence of
formulas without words between them.

I This is guaranteed to be an unacceptable proof!
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Proof by cases

Splitting up a complex argument into cases can be a good strategy

Example: Show that every integer that is a perfect cube (i.e., has
the form n3) is either a multiple of 9, 1 more than a multiple of 9,
or 1 less than a multiple of 9.

Every number n is either a multiple of 3, 1 more than a multiple of
3, or 2 more than a multiple of 3, which means it’s 1 less than a
multiple of 3 (3p + 2 = 3(p + 1)− 1).

I Consider each case separately.
I What’s the form of n3 if n = 3p, n = 3p + 1, and n = 3p − 1,

respectively

15 / 47



Proof by cases

Splitting up a complex argument into cases can be a good strategy

Example: Show that every integer that is a perfect cube (i.e., has
the form n3) is either a multiple of 9, 1 more than a multiple of 9,
or 1 less than a multiple of 9.
Every number n is either a multiple of 3, 1 more than a multiple of
3, or 2 more than a multiple of 3, which means it’s 1 less than a
multiple of 3 (3p + 2 = 3(p + 1)− 1).

I Consider each case separately.
I What’s the form of n3 if n = 3p, n = 3p + 1, and n = 3p − 1,

respectively

15 / 47



Soon we’ll get to a proof method that plays a major role in this
course:

I Induction

But first we’ll briefly cover a few other topics that are

(a) important and

(b) give us practice in writing proofs.

I propositional logic

I sets

I relations

I graphs

I functions
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Propositional Logic (A Very Brief Review)

I will assume that you’ve all seen propositional logic before.
I Whether or not you have, you should read Sections 3.1-3.5 in

MCS
I Section 3.6 talks about first-order (or predicate) logic; we’ll

talk more about that later in the course

I’ll hit some highlights in the next few slides . . .
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Propositional Logic: Syntax
The syntax of propositional logic tells us what formulas are legal:

I We with primitive propositions, basic statements like
I It is now brillig
I This thing is mimsy
I It’s raining in San Francisco
I 4 is even

I We then form more complicated compound propositions using
connectives like:

I ¬: not
I ∧: and
I ∨: or
I ⇒: implies
I ⇔: equivalent (if and only if)

Technically, we define more complicated formulas by induction.

MCS uses English connectives (NOT, AND, OR, IMPLIES, IFF).

I I have no idea why!

I’ll stick to the standard mathematical notation.
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Propositional Logic: Semantics
Semantics tells you when a formula is true.

I I’ll assume you how to define the truth value of compound
propositions given the truth value of primitive propositions,
using truth tables.

I want to focus on the truth table for ⇒:

P Q P ⇒ Q

T T T
T F F
F T ?
F F ?

What should the truth value of P ⇒ Q be when P is false?

P Q P ⇒ Q

T T T
T F F
F T T
F F T

I We take P ⇒ Q to be true if P is false.
I This definition gives what is called material implication

Why is this reasonable?
I This choice is mathematically convenient
I As long as Q is true when P is true, then P ⇒ Q will be true

no matter what.
I It justifies what we did before: Assume P is true, then prove Q.
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I It justifies what we did before: Assume P is true, then prove Q.
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Problems with Material Implication

Although material implication is what we’ll use in this course, it
has some possibly unintended consequences.

I (elephants are pink ⇒ the moon is made of green cheese) ∨
(the moon is made of green cheese⇒ elephants are pink) is
valid

Perhaps a more serious problem: false formulas imply everything.

Suppose that we have a big database, and we want to query it.

I We want the database to return true to a query ϕ if the
conjunction of facts in the database imply ϕ.

I But large databases almost surely have some inconsistency
somewhere.

I Just because a database has some inconsistency somewhere,
we don’t want to conclude that you are a student at Cornell,
and a student at Harvard, and a student at North Dakota
state!
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Alternatives to Material Implication

Logicians have considered a number of different propositional
logics, each with different notions of implication.

I classical (propositional) logic uses material implication.

But there are other propositional logics, including:
I conditional logic, which uses conditional (or counterfactual)

implication
I if the match were dry then it would light

I intuitionistic logic
I p ∨ ¬p is not necessarily valid in intuitionistic logic
I roughly speaking, p is valid in intuitionistic logic only if it has

a constructive proof

I relevance logic, which uses relevant implication: p ⇒ q is true
only if q is true whenever p is, and p is “relevant” to q

I in relevance logic, p ∧¬p does not imply q, although it does in
classical logic.

I This deals with the database problem
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Validity, Satisfiability, and Equivalence

I A formula ϕ is valid (also known as a tautology) if every truth
assignment makes ϕ true.

I ϕ is satisfiable if some truth assignment makes ϕ true.

I Two formulas ϕ and ψ are equivalent if exactly the same
truth assignments make both ϕ and ψ true.

I Lemma: ϕ and ψ are equivalent iff ϕ⇔ ψ is valid.
I This will be homework

Examples:

I ϕ⇒ ψ is equivalent to ¬ϕ ∨ ψ
I ϕ⇒ ψ is equivalent to ¬ψ ⇒ ¬ϕ.

I This justifies proof by contradiction
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First-Order Logic: Syntax

First-order (or predicate) logic extends propositional logic with
I Quantification: ∀nP(n), ∃xP(x).

I The quantifier ranges over some domain

I Predicates that take arguments:
I A unary predicate takes one argument

I Tall(Alice): Tall is a unary predicate

I A binary predicate takes two argument:
I Loves(Alice,Bob)

I In general, we can have k-ary predicates

I Function symbols that take arguments (just like predicates):
+(2, 3) = 5

I Constant symbols: Alice, Bob
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How do we prove for ∀xP(x): i.e., that P(x) is true for all values
of x .

I Here P is a statement (often in English) that mentions x):

I E.g., ∀x(x2 ≥ x)

I Whether ∀xP(x) is true depends on what x ranges over (the
domain)

I ∀x(x2 ≥ x) is false if x ranges over the real numbers.
I (1/2)2 < 1/2

I It’s true if x ranges over the integers.

I To prove it, we consider an arbitrary integer x , and show that
x2 ≥ x for that x .

I How do we do that?

I Consider two cases: x ≥ 1 and x ≤ 0.
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Sets

I’m going to assume that you are familiar with with sets, set
builder notation, and basic operations on sets

I ∪ (union)

I ∩ (intersection)

I ¯ (complementation)

You should read Section 4.1 in the text to review this material!
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Sets and Propositions
There’s a close connection between set operations and
propositional connectives:

I ∪ and ∨
I ∩ and ∧
I ¯ and ¬

What’s the formal connection?

I The set of truth assignments that make ϕ ∨ ψ true is the
union of the set of truth assignments that make ϕ true and
the set that make ψ true.

I The set of truth assignments that make ϕ ∧ ψ true is the
intersection of the set of truth assignments that make ϕ true
and the set that make ψ true.

I The set of truth assignments that make ¬ϕ true is the
complement of the set that make ϕ true.

There’s also a connection between ⇒ and ⊆.
I ϕ⇒ ψ is valid iff the set of truth assignments that make ϕ

true is a subset of the set that makes ψ true. (For homework.)
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Proving Set Equality

One way to prove that A = B (where A and B are sets).
I Prove that A and B have the same elements; that is

I prove x ∈ A iff x ∈ B.

This may involve proving A ⊆ B and B ⊆ A.
I This is an analogous to proving P ⇔ Q by proving P ⇒ Q and

Q ⇒ P.

Similarly, to prove that A ⊆ B,
I prove that x ∈ A implies x ∈ B.
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Sets vs. Sequences

We denote a sequence of objects as (a, b, c)

I the order matters: (a, b, c) 6= (c, b, a)

I elements can be repeated: (a, b, a) is a legitimate sequence of
length 3.

I By way of contrast, with sets, order doesn’t matter
I {a, b, c} = {c , b, a}

and we can’t repeat elements
I We don’t write {a, b, a} or {a, a, b}; we would just write
{a, b}.

I However, there is a notion of multiset where elements are
repeated and the multiplicity matters

I {{a, a, b}} is a meaningful multiset
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Functions

We think of a function f : S → T as providing a mapping from S
to T . But . . .

Formally, a function f : S → T is a set of ordered pairs (s, t),
where s ∈ S and t ∈ T such that for each s ∈ S , there is a unique
t ∈ T such that (s, t) ∈ R.

If f : S → T , then S is the domain of f , T is the codomain;
{y : f (x) = y for some x ∈ S} is the range or image.

Notation: ST denotes the set of functions with domain T and
range S .

I There’s a reason that we use this “exponent” notation.

I We’ll soon show that |ST | = |S ||T |
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We often think of a function as being characterized by an algebraic
formula

I y = 3x − 2 characterizes f (x) = 3x − 2.

It ain’t necessarily so.
I Some formulas don’t characterize functions:

I x2 + y2 = 1 defines a circle; no unique y for each x

I Some functions can’t be characterized by algebraic formulas

I f (n) =

{
0 if n is even
1 if n is odd
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Function Terminology

Suppose f : S → T
I f is onto (or surjective) if, for each t ∈ T , there is some

s ∈ S such that f (s) = t.
I if f : R+ → R+, f (x) = x2, then f is onto
I if f : R → R, f (x) = x2, then f is not onto

I f is one-to-one (1-1, injective) if it is not the case that s 6= s ′

and f (s) = f (s ′).
I if f : R+ → R+, f (x) = x2, then f is 1-1
I if f : R → R, f (x) = x2, then f is not 1-1.

I a function is bijective if it is 1-1 and onto.
I if f : R+ → R+, f (x) = x2, then f is bijective
I if f : R → R, f (x) = x2, then f is not bijective.
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Inverse Functions
If f : S → T , then f is invertible if there exists a function
g : T → S such that

f (s) = t iff g(t) = s.

I If f is invertible, then g is called the inverse of f
I We usually denote the inverse of f as f −1

I If f is invertible, then
I for all s ∈ S , (f −1 ◦ f )(s) = s
I for all t ∈ T , (f ◦ f −1)(t) = t

I If (g ◦ f )(s) = s for all s ∈ S , then g is a left inverse of f
I If (f ◦ g)(t) = t for all t ∈ T , then g is a right inverse of f

I Theorem: f is injective iff it has a left inverse.
I Theorem: f is surjective iff it has a right inverse.
I Theorem: f is a bijection iff it is invertible.

If f is not invertible, we still often abuse notation and view f −1 as
a relation, taking

f −1(t) = {s : f (s) = t}.
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Cardinality

The cardinality of a finite set S , denoted |S |, is the number of
element in S :

I |{1, 2, 7}| = 3

Theorem: If S and T are finite sets then:

(a) There is an injection from S to T iff |S | ≤ |T |;
(b) There is a surjection from S to T iff |S | ≥ |T |;
(c) There is a bijection from S to T iff |S | = |T |.

For these proofs, it is convenient that we can count the elements
of a finite set and list them in the order that we count them.
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Cardinality of Infinite Sets
What about infinite sets?

I How does the number of natural numbers compare to the
number of even numbers?
(a) more
(b) less
(c) the same

I Natural numbers vs. integers?
(a) more
(b) less
(c) the same

I Natural numbers vs. rational numbers?
(a) more
(b) less
(c) the same

I Rational numbers vs. irrational numbers?
(a) more
(b) less
(c) the same
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To answer these questions, we need some way to compare the sizes
of infinite sets.

Idea: (Georg Cantor) use the characterization for finite sets as the
definition:
Definition: |S | ≤ |T | if there is an injection from S to T

I For homework: there is an injection from S to T iff there is a
surjection from T to S .

|S | = |T | if there is a bijection from S to T .
I S and T have the same cardinality if you can match up their

elements

For this to be reasonable, we would expect that if |S | ≤ |T | and
|T | ≤ |S |, then |S | = |T |.

I That is, if there’s an injection from S to T and an injection
from T to S , then there’s a bijection from S to T .

I This is true, but it’s not obvious!

Theorem: [Schröder-Bernstein] If |S | ≤ |T | and |T | ≤ |S | iff
|S | = |T |.
Proof coming soon.
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Countable sets
Definition: If there is a bijection between IN and S , then S is
countable.

I The formal definition of countable is that a set S is countable
iff there’s an injection from S to IN. That means that finite
sets are also countable.

I After all, you can count them.
I If there’s a bijection from S to IN, then S is countably infinite.

I A bijection f : IN → S tells you how to count the elements of
S .

I f (1) is the first element of S , f (2) is the second element, . . .

Theorem: The following sets are countable:

I The even numbers

I The multiples of three

I The integers

I IN × IN

I The rational numbers
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Diagonalization

So are all infinite sets countable?
Theorem: [Cantor] For all sets S , |P(S)| > |S |.

I Recall: P(S), the power set of S , consists of all subsets of S
I P(S) is sometimes denoted 2S , for reasons that will become

clearer when we do combinatorics.
I The text writes pos(S) (which is quite nonstandard!)

Proof: There’s an injection from S to P(S):

I s → {s}
Now we have to show that there is no surjection from S to P(S).
How are we going to do that?

I It’s not enough to show that any specific function is not a
surjection.

I We have to show that there are no surjections.
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We do a proof by contradiction. Suppose that f : S → P(S). I will
show that f is not a surjection by constructing a set A such that
f (s) 6= A for all s ∈ S .
Here’s how A is defined:

I s ∈ A iff s /∈ f (s).

Suppose that there is some s0 such that f (s0) = A.
Is s0 ∈ A?

I If s0 ∈ A, then s0 ∈ f (s0) (because f (s0) = A), but then
s0 /∈ A (by definition of A) - contradiction!

I If s0 /∈ A, then s0 /∈ f (s0), so s0 ∈ A!

Bottom line: s0 ∈ A iff s0 /∈ A - contradiction!
Conclusion: There is no s0 such that f (s0) = A. So there is no
surjection from S to P(S).
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Why is this called a diagonalization? Consider the special case
where S = IN:

I We can construct a matrix of 0s and 1s, where the ijth entry
is 1 iff j ∈ f (i).

I We can then construct a new set by flipping the elements of
the diagonal: A = {i : i /∈ f (i)}.

I (This should make more sense when I discuss it in class and
draw a picture.)
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IR is uncountable
Theorem: IR is uncountable.

Proof: I’ll show that [0, 1) = {x ∈ IR : 0 ≤ x < 1} is uncountable.

Recall that a real number between 0 and 1 can be written as an
infinite decimal:

0.x0x1x2 . . .

Suppose, by way of contradiction, that f : IN → [0, 1) is a
surjection. I’ll construct x ∈ [0, 1) that’s not in the range of f .
Define x = .x0x1x2 . . . as follows:

I To compute xk , we consider f (k).
I f (k) ∈ [0, 1), so f (k) = .y0y1y2 . . .
I If yk = 0, then xk = 1; if yk 6= 0, then xk = 0.
I Bottom line: xk 6= yk .

Claim: x = .x0x1x2 . . . is not in the range of f .
I The kth digit of x differs from the kth digit of f (k), so

x 6= f (k).

I E.g., x 6= f (7), because if f (7) = .y0y1..., then x7 6= y7.

Thus, |IN| < |IR|.
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Why the Schröder-Bernstein Theorem Isn’t Obvious

Next we want to prove the Schröder-Bernstein Theorem:

Theorem: [Schröder-Bernstein] If |S | ≤ |T | and |T | ≤ |S | iff
|S | = |T |.

Suppose S = [0, 1/2), T = (0, 1).

I It’s easy to see that there’s an injection S → T :

I E.g.: f (x) = x + 1/4.
I The identity won’t work, because 0 ∈ S = T .

I It’s also easy to see that there’s an injection T → S :

I g(x) = x/2

But can you construct a bijection h : S → T?

I The Schröder-Bernstein Theorem guarantees that there is
one, but it’s not so easy to define.
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Proof of Schröder-Bernstein

Theorem: [Schröder-Bernstein] If |S | ≤ |T | and |T | ≤ |S | iff
|S | = |T |.

I In words: There is an injection from S to T and an injection
from T to S iff there is a bijection from S to T .

Proof: Clearly if |S | = |T | then |S | ≤ |T | and |T | ≤ |S |. If f is a
bijection from S to T , then there is an injection from S to T (f
itself) and an injection from T to S :

f −1.

Now the hard part: Suppose that there is an injection f : S → T
and an injection g : T → S . We want to construct a bijection
h : S → T .

For simplicity, assume that S and T are disjoint (S ∩ T = ∅).
I Can always rename the elements of T to ensure this.

I Renaming is a bijection
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Consider chains of ancestors starting with some element s ∈ S :
where if s ′ ∈ S is on the chain and t ′ ∈ T is the next element,
then g(t ′) = s ′; if u is the element after t, then f (u) = t.

· · · f→ t ′
g→ s ′

f→ t
g→ s

Because f and g are injections, there’s a unique way to extend
these chains backwards as much as possible.

Claim 1: There are four possibilities for the chain:

I It is infinite, with no repetitions of elements.
I It is a loop (i.e., the first element repeats, so you go around

and around the loop).
I It is finite and ends in an element of S .
I It is finite and ends in an element of T .

Why can’t it loop back to an element other than the first element?

I If s ′ the first element to repeat, and it’s not the first element,
then it has successors t1 and t2. Since f (s ′) = t1 and
f (s ′) = t2, s ′ is not the first element to repeat!
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· · · f→ t ′
g→ s ′

f→ t
g→ s

Let SS and TS be the subsets of S and T , respectively, for which
the chain is finite and ends in an element of S ;

Claim 2: f maps SS to TS and is a bijection between SS and TS .

Proof: Since f is an injection on S , it’s still an injection on SS . If
t ∈ TS , then it starts some finite chain that ends in an element of
S . Let s ′ be the predecessor of t on the chain. Then s ′ ∈ SS (the
chain starting at s ′ is just the chain starting at t without t) and
f (s ′) = t. Thus, f is a surjection from SS to TS .

Claim 3: g maps T c
S to Sc

S and is a bijection between TS and Sc
S .

Proof; Again g is clearly an injection. If s ∈ Sc
s , then there must

be some t such that g(t) = s (otherwise the chain starting at s
ends at s, and s ∈ SS). Moreover t ∈ T c

S (if there is a chain
starting at t ending at an element of S , there is also a chain
starting at s ending in an element of S , contradicting the
assumption that s ∈ Sc

S .

45 / 47



· · · f→ t ′
g→ s ′

f→ t
g→ s

Let SS and TS be the subsets of S and T , respectively, for which
the chain is finite and ends in an element of S ;

Claim 2: f maps SS to TS and is a bijection between SS and TS .

Proof: Since f is an injection on S , it’s still an injection on SS . If
t ∈ TS , then it starts some finite chain that ends in an element of
S . Let s ′ be the predecessor of t on the chain. Then s ′ ∈ SS (the
chain starting at s ′ is just the chain starting at t without t) and
f (s ′) = t. Thus, f is a surjection from SS to TS .

Claim 3: g maps T c
S to Sc

S and is a bijection between TS and Sc
S .

Proof; Again g is clearly an injection. If s ∈ Sc
s , then there must

be some t such that g(t) = s (otherwise the chain starting at s
ends at s, and s ∈ SS). Moreover t ∈ T c

S (if there is a chain
starting at t ending at an element of S , there is also a chain
starting at s ending in an element of S , contradicting the
assumption that s ∈ Sc

S .

45 / 47



· · · f→ t ′
g→ s ′

f→ t
g→ s

Let SS and TS be the subsets of S and T , respectively, for which
the chain is finite and ends in an element of S ;

Claim 2: f maps SS to TS and is a bijection between SS and TS .

Proof: Since f is an injection on S , it’s still an injection on SS . If
t ∈ TS , then it starts some finite chain that ends in an element of
S . Let s ′ be the predecessor of t on the chain. Then s ′ ∈ SS (the
chain starting at s ′ is just the chain starting at t without t) and
f (s ′) = t. Thus, f is a surjection from SS to TS .

Claim 3: g maps T c
S to Sc

S and is a bijection between TS and Sc
S .

Proof; Again g is clearly an injection. If s ∈ Sc
s , then there must

be some t such that g(t) = s (otherwise the chain starting at s
ends at s, and s ∈ SS). Moreover t ∈ T c

S (if there is a chain
starting at t ending at an element of S , there is also a chain
starting at s ending in an element of S , contradicting the
assumption that s ∈ Sc

S .

45 / 47



· · · f→ t ′
g→ s ′

f→ t
g→ s

Let SS and TS be the subsets of S and T , respectively, for which
the chain is finite and ends in an element of S ;

Claim 2: f maps SS to TS and is a bijection between SS and TS .

Proof: Since f is an injection on S , it’s still an injection on SS . If
t ∈ TS , then it starts some finite chain that ends in an element of
S . Let s ′ be the predecessor of t on the chain. Then s ′ ∈ SS (the
chain starting at s ′ is just the chain starting at t without t) and
f (s ′) = t. Thus, f is a surjection from SS to TS .

Claim 3: g maps T c
S to Sc

S and is a bijection between TS and Sc
S .

Proof; Again g is clearly an injection. If s ∈ Sc
s , then there must

be some t such that g(t) = s (otherwise the chain starting at s
ends at s, and s ∈ SS). Moreover t ∈ T c

S (if there is a chain
starting at t ending at an element of S , there is also a chain
starting at s ending in an element of S , contradicting the
assumption that s ∈ Sc

S .
45 / 47



Now we can define a bijection h : S → T :

I if s ∈ SS , then h(s) = f (s);
I If s /∈ Ss , then h(s) = g−1(s)

I This works, because g : T c
S → Sc

S is a bijection, so
g−1 : Sc

S → T c
S is well defined.
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The Continuum Hypothesis

It’s not hard to show that IN is the smallest infinite set

I For all infinite sets A, there is an injection from IN to A

We know that |IN| < |P(IN)| = |IR|.
I Is there an infinite set X whose cardinality is between that of

IN and IR?
I Cantor conjectured that there wasn’t.

I This conjecture became known as the continuum hypothesis.

I You can’t prove or disprove the continuum hypothesis using
the standard axioms of mathematics.

I That fact has been proved.
I It follows from work of Kurt Gödel and Paul Cohen
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