Patterns and Finite Automata

A pattern is a set of objects with a recognizable property.

> In computer science, we're typically interested in patterns that
are sequences of character strings

> | think “Halpern” a very interesting pattern
» | may want to find all occurrences of that pattern in a paper

» Other patterns:
> if followed by any string of characters followed by then
> all filenames ending with “.doc”

Pattern matching comes up all the time in text search.

A finite automaton is a particularly simple computing device that
can recognize certain types of patterns, called regular languages

» The text does not cover finite automata; there is a separate
handout on CMS.

37

Finite Automata

A finite automaton is a machine that is always in one of a finite
number of states.
» When it gets some input, it moves from one state to another

» If I'min a “sad” state and someone hugs me, | move to a
“happy” state
» If 'min a “happy” state and someone yells at me, | move to a
“sad” state
» Example: A digital watch with “buttons” on the side for
changing the time and date, or switching it to “stopwatch”
mode, is an automaton
» What are the states and inputs of this automaton?
» A certain state is denoted the start state
» That's how the automaton starts life
» Other states are denoted final state

» The automaton stops when it reaches a final state
» (A digital watch has no final state, unless we count running
out of battery power.)

)

37

Representing Finite Automata Graphically

A finite automaton can be represented by a labeled directed graph.

» The nodes represent the states of the machine

» The edges are labeled by inputs, and describe how the
machine transitions from one state to another

37

Example:

» There are four states: sp, s1, S, S3
> sp is the start state (denote by “start —", by convention)
» sp and s3 are the final states (denoted by double circles, by
convention)
> The labeled edges describe the transitions for each input
» The inputs are either 0 or 1
> in state sp and reads O, it stays in sg
If the machine is in state sp and reads 1, it moves to s
If the machine is in state s; and reads 0, it moves to s;
If the machine is in state s; and reads 1, it moves to s

vYvyy

What happens on input 000007 01010107 0101017 117

» Some strings move the automaton to a final state; some don't.

> The strings that take it to a final state are accepted.

5/37

A Parity-Checking Automaton

Here's an automaton that accepts strings of Os and 1s that have
even parity (an even number of 1s).
We need two states:

> sp: we've seen an even number of 1s so far
> s1: we've seen an odd number of 1s so far
The transition function is easy:

> If you see a 0, stay where you are; the number of 1s hasn't
changed

> If you see a 1, move from sy to si, and from s; to sg

6 /37

Finite Automata: Formal Definition

A (deterministic) finite automaton is a tuple M = (S, 1, f, sp, F):

>

v

v

v

S is a finite set of states;
I is a finite input alphabet (e.g. {0,1}, {a,...,z})
f is a transition function; f : S x| — S

» f describes what the next state is if the machine is in state s
and sees input i € /.

sp € S is the initial state;
F C S is the set of final states.

37

Example:

> S = {So, 51,52, 53}

» | ={0,1}

» = {So, 53}

» The transition function f is described by the graph;

> f(S(),O) = 50, f(So,].) = 51, f(Sl,O) =50, .-

You should be able to translate back and forth between finite
automata and the graphs that describe them.

37

Describing Languages

The language accepted (or recognized) by an automaton is the set
of strings that it accepts.

> A language is a set of strings

We need tools for describing languages.
» If A and B are sets of strings, then AB, the concatenation of
Aand B,is {ab: a€ A, be B}.
» Example: If A= {0,11}, B = {111,00}, then
» AB = {0111,000, 11111, 1100}
» BA = {1110,11111,000,0011}
» Define A" inductively:
» A% = {)\}: X is the empty string
> Ax = x\ = x for all strings x
> A]' = A
> An+1 — AA"
> A* = U2 A"

Describing Languages

The language accepted (or recognized) by an automaton is the set
of strings that it accepts.

> A language is a set of strings

We need tools for describing languages.
» If A and B are sets of strings, then AB, the concatenation of
Aand B,is {ab: a€ A, be B}.
» Example: If A= {0,11}, B = {111,00}, then
» AB = {0111,000, 11111, 1100}
» BA = {1110,11111,000,0011}
» Define A" inductively:
» A% = {)\}: X is the empty string
> Ax = x\ = x for all strings x
» Al=A
> AL = AA7
> AY = U A
» What's {0,1}"? {0,1}*? {11}*?

37

Regular Expressions
A regular expression is an algebraic way of defining a pattern
Definition: The set of regular expressions over | (where | is an
input set) is the smallest set S of expressions such that:

» the symbol () € S (that should be a boldface ()

» the symbol A € S (that should be a boldface \)

» the symbol x € S is a regular expression if x € [;

» if E; and E> are in S, then so are (E1E3), (E; UE) and Ej.
That is, we start with the empty set, A, and elements of /, then
close off under union, concatenation, and .

» A regular set is a syntactic object: a sequence of symbols.

» Concatenation, union, and * are overloaded; they're used for
both languages (sets of strings) and regular expressions
(sequences of symbols)

» The parens help disambiguate: ((ab) Uc) # (a(bUc))

» There is an equivalent inductive definition (see homework).

Those of you familiar with the programming language Perl or Unix
searches should recognize the syntax ...

10/37

Each regular expression E over I defines a subset of /*, denoted
L(E) (the language of E) in the obvious way:

> L(0) = 0;
> L(A) ={Ah
> L(x) = {x}
> L(ElEz): (E]_)L(Ez);
> L(E1 @] E2) = L(El) @) L(Ez),
> L(E*) = L(E)*.
Examples:

» What's L(0*10%10%)?
» What's L((0*10%10%)")? L(0*(0*10*10%)*)?
» L(0*(0"10*10%)*) is the language accepted by the parity
automaton!
» If X ={a, ,9} U Punctuation, what is
TRV ATAYETR IS
» Punctuation consists of the punctuation symbols (comma,
period, space, etc.)
» Y is the input alphabet
> Note that
L(EHalpemX*) = £*{HHaHI}{p}HeHrH{n}E".

11/37

Can you define an automaton that accepts exactly the strings in
> *HalpernX*?

» How many states would you need?

12 /37

Can you define an automaton that accepts exactly the strings in
> *HalpernX*?
» How many states would you need?

What language is represented by the automaton in the original
example:

12 /37

Can you define an automaton that accepts exactly the strings in
> *HalpernX*?
» How many states would you need?

What language is represented by the automaton in the original
example:

» ((10)*0*((110) U (111))*)*
» Perhaps clearer: ((0U1)*0U111)*
> It's not easy to prove this formally!

12 /37

What language is accepted by the following automata:

1 0,1

0
start

13 /37

What language is accepted by the following automata:

1 0,1

L(1%) = {1)*

13 /37

What language is accepted by the following automata:

1 0,1

L(1%) = {1)*

L(1U01) = {1,01}

13 /37

0 0,1 0,1
0

14 /37

0 0,1 0,1
0

L(0*10(0 U 1)*) = {0}*{10}{0,1}*

14 /37

Nondeterministic Finite Automata

So far we've considered deterministic finite automata (DFA)
» what happens in a state is completely determined by the input
symbol read
Nondeterministic finite automata allow several possible next states
when an input is read.

Formally, a nondeterministic finite automaton is a tuple
M = (S,I,f,sy, F). All the components are just like a DFA,
except now f : S x | — 2° (before, f: S x | = S).
» if s’ € f(s,i), then s’ is a possible next state if the machines
is in state s and sees input i.

15 /37

We can still use a graph to represent an NFA. There might be
several edges coming out of a state labeled by i € /, or none. In
the example below, there are two edges coming out of sy labeled 0,
and none coming out of s4 labeled 1.

» Can either stay in sp or move to s,

» On input 111, get stuck in s4 after 11, so 111 not accepted.

16

37

» An NFA M accepts (or recognizes) a string x if it is possible
to get to a final state from the start state with input x.

» The language L is accepted by an NFA M consists of all
strings accepted by M.

What language is accepted by this NFA:

17 /37

» An NFA M accepts (or recognizes) a string x if it is possible
to get to a final state from the start state with input x.

» The language L is accepted by an NFA M consists of all
strings accepted by M.

What language is accepted by this NFA:

L(0*01 U 0%11)

17 /37

Equivalence of Automata

Every DFA is an NFA, but not every NFA is a DFA.
» Do we gain extra power from nondeterminism?

> Are there languages that are accepted by an NFA that can't be
accepted by a DFA?
» Somewhat surprising answer: NO!

Define two automata to be equivalent if they accept the same
language.

Example:

0 0 01

1 0,1
DD DO

18 /37

Theorem: Every nondeterministic finite automaton is equivalent
to some deterministic finite automaton.
Proof: Given an NFA M = (S, 1, f, s, F), let
M = (S, 1, {so}, F'), where
» S =2°
» f'(Ai) = {t: t € f(s,i) for some s € A} € 2°
» 129 x| = 2% (ie, S x1 =5
» FF={A:ANF #0}
Thus,
> the states in M’ are subsets of states in M;
» the final states in M’ are the sets which contain a final state
in M;
> in state A, given input /, the next state consists of all possible
next states from an element in A.
M’ is deterministic.
» This is called the subset construction.
» The states in M’ are subsets of states in M.

19/37

We want to show that M accepts x iff M’ accepts x.

> Let x = xq...xk.
» If M accepts x, then there is a sequence of states sp, ..., Sk
such that s, € F and sj1 € f(si, Xi+1)-
» That's what it means for an NFA M to accept x
> Sp,...,Sk Is a possible sequence of states that M goes through
on input x
> It's only one possible sequence: M is an NFA

> Define Ay, ..., Ak inductively:
Ao = {So} and A;+1 = f/(A,',X,'Jrl).
» Intuitively, A; is the set of states that M could be in after
seeing xj ...X;

» Remember: a state in M’ is a set of states in M.
» M’ is deterministic: this sequence is unique.

» An easy induction shows that s; € A;.

» Therefore s, € Ak, so AxNF # (.

» Conclusion: A, € F/, so M’ accepts x.

20 /37

For the converse, suppose that M’ accepts x

>

Let Ao, ..., Ak be the sequence of states that M’ goes
through on input x.

Since A, N F # (), there is some t, € AN F.

By induction, if 1 < j < k, can find t,_; € Ax_;j such that
tk—j+1 € f(th—j, Xk—j)-

Since Ap = {so}, we must have sy = tg.

Thus, tg ...tk is an accepting path for x in M

Conclusion: M accepts x

21/37

Notes:
» Michael Rabin and Dana Scott won a Turing award for
defining NFAs and showing they are equivalent to DFAs
» This construction blows up the number of states:
> |S] = oIS
» Sometimes you can do better; in general, you can't

Regular Languages and Finite Automata

Some notation:

» Language L is regular iff L = L(E) for some regexp E.

» L(M) is the language accepted by the automaton M
Theorem: L = L(M) for some automaton M iff L is regular.

First we'll show that every regular language is accepted by some
finite automaton:

Proof: We show that L(E) is accepted by a finite automaton by
induction on the (length/structure) of E. We need to show that
») = L(0) = L(M) for some finite automaton M
» Easy: build an automaton where no input ever reaches a final
state
» {A} = L(\) = L(M) for some finite automaton M
» Easy: M has two states, sp and sy, sp is the only accepting
state, but every non-empty string ends leads to s;.
» For each x € I, {x} = L(x) = L(M) for some automaton M
» Easy: an automaton with states {sp, s1, 5.}, only s is an
accepting state, x leads from sy to s3, all other nonempty
strings lead to s;.

23 /37

We next show that L(E;1Ej) is accepted by some automaton.

Suppose that L(E;) = A, L(E2) = B. By the induction hypothesis,

there exist automata My = (Sa, I, fa, sa, Fa) and

Mg = (SB, I, g, sg, FB) such that A = L(MA) and B = L(MB).
Suppose that My and Mg and NFAs, and S4 and Sg are disjoint
(without loss of generality).

Idea: We hook My and Mg together. Let NFA
Mag = (SA U Sg, I, fag, sa, FAB): where
. FeUFs if Xe B;
> Fas = { Fg otherwise
> t € fag(s,i) if either
» s€ Sapand t € fa(s, i), or

» s€ Sgand t € fg(s,i), or
» s€ Faand t € fg(sg, i) (“switch” from M, to Mg)

Idea: given input xy € AB, the machine “guesses’ when to switch
from running M4 to running Mp.

Claim: L(Mag) = AB.

24 /37

Proof: There are two parts to this proof:

1. Showing that if x € AB, then x € L(Mag).

2. Show that if x € L(Mag), then x € AB.
For part 1, suppose that x = ab € AB, where a = a; ... a) and
b= by ...by. Then there exists an accepting path for a in M4 and
one for b in Mg; that is, a sequence of states sp,...,sx € Sp and a
sequence of states tg,...,t, € Sg such that

> 5o = sa and ty = sg;

> siy1 € fa(si,aip1) and tipy € fa(t;, biy1)

> s € Fpand t,, € Fp.
That means that after reading a, Mag could be in state s. If
b=\, Map accepts a (since sy € Fa C Fag if A € B). Otherwise,

Mapg can continue to ti, ..., ty, when reading b, so it accepts ab
(since ty, € Fg C Fag).
> is, S9,...,Sk, t1,...,tm IS an accepting path for ab

> Note that there is no ty; we go from s to t;

25 /37

For part 2, suppose that x = ¢; ... ¢, is accepted by Mag. That

means that there is a sequence of states sp,...,S, € S4 U Sg such
that
> So = SaA

> siv1 € fag(si, Cit1)
> s, € Fag
If s, € Fa, then A € B, sp,...,5, C Sa (since once Mag moves to

a state in Sg, it never moves to a state in Sa), so x is accepted by
Ma. Thus, x € AC AB.

26

37

For part 2, suppose that x = ¢; ... ¢, is accepted by Mag. That

means that there is a sequence of states sp,...,S, € S4 U Sg such
that

> So = SA

> siy1 € fag(si; Giy1)

> s, € Fag
If s, € Fa, then A € B, sp,...,5, C Sa (since once Mag moves to

a state in Sg, it never moves to a state in Sa), so x is accepted by
Myu. Thus, x € AC AB.

If s, € Fp, let s; be the first state in the sequence in Sg. Then
S0,---,5—1 C Sa, Sj—1 € Fa, s0 c1...cj—1 is accepted by M4, and
hence is in A. Moreover, sg,s;j,...,s, C Sg (once Mag is in a
state of Sg, it never moves to a state of S4), so ¢j...cp is
accepted by Mg, and hence is in B. Thus,
x=(c1...¢i—1)(¢j...cn) € AB.

26

37

We next show that L(E; U Ejy) is accepted by some automaton.
» Suppose that A= L(E;) and B = E»).
» By the induction hypothesis, there exist automata
MA = (SA, /, fA, SA, FA) and MB = (SB, /, fB, SB, FB) such
that A= L(M,) and B = L(Mp).
» Again, assume without loss of generality that M4 and Mg and
NFAs, and that S5 and Sg are disjoint.

Idea: given input x € AU B, the machine “guesses” whether to
run My or Mg.
> Maug = (SA USgU {So}, I, fauB, So, FAUB), where
> 5o is a new state, not in S5, U Sg
fa(s, i) if s € Sa
> fAug(S, I) = { fB(S7 I) if s € Sg
f'—A(SA7 I) U fB(SB, I) if s = s
. FAuB:{ FAUFBU{S()} If)\EAUB
FaU Fg otherwise.
» We have to prove that L(Maug) = AU B; this is
straightforward.

27 /37

Last step: show that L(E*) is regular.

As before, suppose that A = L(E), and that M = Sa, [, fa, sa, Fa)
accepts M.

My = (SA U {So}, I, fa«,s0, Fa U {50}), where
> Sp is a new state, not in Sy;

fA(S, f) if s e SA — FA;
> fA*(S, I): fA(S, i)UfA(SA,i) if s € Fpy;
fA(SA,f) if s = S0

We now have to prove that L(Ma-) = A*.
> Left for homework!

28 /37

Next we'll show that every language accepted by a finite
automaton is regular:

Proof: Fix an automaton M with states {sp,...,s,}. Can assume
wlog (without loss of generality) that M is deterministic.

> a language is accepted by a DFA iff it is accepted by a NFA.

Let 5(si,sj, k) be the set of strings that force M from state s; to s;
on a path such that every intermediate state is {sp, ..., Sk}

» E.g., S(sa, ss5,2) consists of all strings that force M from s4 to
s5 on a path that goes through only sp, s1, and s, (in any
order, perhaps with repeats).

Note that a string x is accepted by M iff x € S(sp, s, n) for some
final state s. Thus, L(M) is the union over all final states s of
S(so, s, n).

29 /37

An example:

0,1 0,1
start

01

S(s0,51,0) = {0,1}; S(s0,51,1) = {0, 1};
S(so, s1,2) = {all strings of length 1 mod 3}.

30/37

An example:

0,1 0,1
start

01

S(s0,51,0) = {0,1}; S(s0,51,1) = {0, 1};
S(so, s1,2) = {all strings of length 1 mod 3}.

We will prove by induction on k that S(s;, sj, k) is regular.

» Why not just take s; = 557
» We need a stronger induction hypothesis

30/37

An example:

0,1 0,1
start

01

S(s0,51,0) = {0,1}; S(s0,51,1) = {0, 1};
S(so, s1,2) = {all strings of length 1 mod 3}.

We will prove by induction on k that S(s;, sj, k) is regular.
» Why not just take s; = 557
» We need a stronger induction hypothesis
Base case:
Lemma 1: S(s;,s;, —1) is regular.

Proof: For a string o to be in S(s;,s;, —1), it must go directly
from s; to s;, without going through any intermediate states.
Thus, 0 must be some subset of / (possibly empty) together with
A if s; = s;. Either way, S(s;, sj, —1) is regular.

30/37

Lemma 2: If 5; # si11, then S(s;, s,k +1) =
S(si,sj, k) U S(si, sk, K)(S(Sk41s Sk+15 k) *S(Sk+1, 555 k).

31/37

Lemma 2: If 5; # si11, then S(s;, s,k +1) =
S(si,Sj, k) U S(si, Skt15 k) (S(Sk+1, Skt15 &) *S(Sk41, 5j5 k)-
Proof: If a string o forces M from s; to s; on a path with
intermediates states all in {sp, ..., Sk+1}, then the path either does
not go through s, at all, so is in S(s;, sj, k), or goes through
sk+1 some finite number of times, say m. That is, the path looks
like this:
Sj+. Sk4+1---Sk+1---Sk+1---5f

where all the states in the ... part are in {sp,...,sx}. Thus, we
can split up the string o into m 4+ 1 corresponding pieces:

> 0o that takes M from s; to sky1,

» each of 01,...,0, take M from s, 1 back to sii1
> omy1 takes M from s, to s;.
Thus,
> Op € S(S;,Sk+1,k)
> 01,...,0m are all in S(sk+1, Sk+1, k)
> Omt1 € S(Sk+1,5), k)
>» SO0 =0001...0m+1 €

S(si,sj, k) U S(siy Skq1, k)(S(Skt1, Skr1, k))*S(Sk41, 5j, k)

31/37

Lemma 3: If 5; = 5,41, then

S(S;,Sj, k +].) = S(S;,Sj, k) U S(Si,Sj, k)(S(Sj,Sj, k))*

Proof: Same idea as previous proof.

32/37

Lemma 3: If 5; = 5,41, then

S(S;,Sj, k +].) = S(S;,Sj, k) U S(Si,Sj, k)(S(Sj,Sj, k))*

Proof: Same idea as previous proof.

32/37

Lemma 3: If 5; = 5,41, then

5(5,', Sjs k +].) = S(S,', Sj k) U 5(5;, Sj, k)(S(Sj, Sj, k))*
Proof: Same idea as previous proof.

Lemma 4: S(s;,s;, N) is regular for all N with —1 < N < n.

Proof: An easy induction. Lemma 1 gives the base case; Lemmas
2 and 3 give the inductive step.

32/37

Lemma 3: If 5; = 5,41, then

5(5,', Sjs k+].) = S(S,', Sj k) U 5(5;, Sj, k)(S(Sj, Sj, k))*

Proof: Same idea as previous proof.

Lemma 4: S(s;,s;, N) is regular for all N with —1 < N < n.
Proof: An easy induction. Lemma 1 gives the base case; Lemmas

2 and 3 give the inductive step.

The language accepted by M is the union of the sets S(sp, s, n)
such that s’ is a final state. Since regular languages are closed
under union, the result follows.

32/37

We can use the ideas of this proof to compute the regular language
accepted by an automaton.

5(507507) = {)‘)O}v 5(50551) _1) = {1}v e

> S(so,50,0) = 0%; S(s1,50,0) =00*; S(sp,s1,0) =01,
5(5 S1,)—00* ;

5(50,507)= (0*(10))

We can methodically build up to S(so, o, 2), which is what we
want (since s3 is unreachable).

33/37

A Non-Regular Language
Not every language is regular/accepted by a DFA.
Theorem: L ={0"1":n=0,1,2,...} is not regular.
Proof: Suppose, by way of contradiction, that L is regular. Then
there is a DFA M = (S5,{0,1}, f, sp, F) that accepts L. Let
N =S| (i.e., there are N states in M). Let ty,..., toy be the path
of states that M visits on input ON1V
» Thus, tg = sp and typ is an accepting state
» We must have f(t;,0) = tj1q for i =0,...,N—1.
Since M has N states, by the pigeonhole principle, at least two of

to, ..., ty are the same. Suppose t; = t;, where i < j and
j—i=d.
Claim: M accepts 0V091N, and ON0291N, oNO391N, ... So M

does not accept L.

Proof: Starting in ty = s, 0’ brings the machine to t;; another od
bring the machine back to t; (since tj = tj14 = t;); another o

bring machine back to t; again. After going around the loop for a
while, then can continue to toyy and accept. 34/37

The Pumping Lemma
The techniques of the previous proof generalize. If M is a DFA and
x is a string accepted by M such that |x| > |S|
> |S| is the number of states; |x| is the length of x
then there are strings u, v, w such that
> X = uvw,
> uv] < S|,
> v >1,
» uv'w is accepted by M, for i =0,1,2,....
The proof is the same as on the previous slide.
» x was 071", u =0/, v =0t, w=0N-t-711N,
We can use the Pumping Lemma to show that many languages are
not regular
> {1”2 :n=0,1,2,...}: homework
» {0°"1":n=0,1,2,...}: homework
» {1": nis prime}
> ...

35/37

More Powerful Machines
Finite automata are very simple machines.
» They have no memory
» Roughly speaking, they can't count beyond the number of
states they have.
Pushdown automata have states and a stack which provides
unlimited memory.
» They can recognize all languages generated by context-free
grammars (CFGs)
» CFGs are typically used to characterize the syntax of
programming languages
» They can recognize the language {0"1" : n=0,1,2,...}, but
not the language L' = {0"1"2" : n=0,1,2,...}
Linear bounded automata can recognize L.
» More generally, they can recognize context-sensitive grammars
(CSGs)
» CSGs are (almost) good enough to characterize the grammar
of real languages (like English)

36

37

Most general of all: Turing machine (TM)

» Given a computable language, there is a TM that accepts it.

» This is essentially how we define computability.

If you're interested in these issues, take CS 4810!

37/37

