Patterns and Finite Automata

A pattern is a set of objects with a recognizable property.

> In computer science, we're typically interested in patterns that
are sequences of character strings

> | think “Halpern” a very interesting pattern
» | may want to find all occurrences of that pattern in a paper

» Other patterns:
> if followed by any string of characters followed by then
> all filenames ending with “.doc”

Pattern matching comes up all the time in text search.

A finite automaton is a particularly simple computing device that
can recognize certain types of patterns, called regular languages

» The text does not cover finite automata; there is a separate
handout on CMS.
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Finite Automata

A finite automaton is a machine that is always in one of a finite
number of states.
» When it gets some input, it moves from one state to another

» If I'min a “sad” state and someone hugs me, | move to a
“happy” state
» If 'min a “happy” state and someone yells at me, | move to a
“sad” state
» Example: A digital watch with “buttons” on the side for
changing the time and date, or switching it to “stopwatch”
mode, is an automaton
» What are the states and inputs of this automaton?
» A certain state is denoted the start state
» That's how the automaton starts life
» Other states are denoted final state

» The automaton stops when it reaches a final state
» (A digital watch has no final state, unless we count running
out of battery power.)

)
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Representing Finite Automata Graphically

A finite automaton can be represented by a labeled directed graph.

» The nodes represent the states of the machine

» The edges are labeled by inputs, and describe how the
machine transitions from one state to another
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Example:

» There are four states: sp, s1, S, S3
> sp is the start state (denote by “start —", by convention)
» sp and s3 are the final states (denoted by double circles, by
convention)
> The labeled edges describe the transitions for each input
» The inputs are either 0 or 1
> in state sp and reads O, it stays in sg
If the machine is in state sp and reads 1, it moves to s
If the machine is in state s; and reads 0, it moves to s;
If the machine is in state s; and reads 1, it moves to s
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What happens on input 000007 01010107 0101017 117

» Some strings move the automaton to a final state; some don't.

> The strings that take it to a final state are accepted.
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A Parity-Checking Automaton

Here's an automaton that accepts strings of Os and 1s that have
even parity (an even number of 1s).
We need two states:

> sp: we've seen an even number of 1s so far
> s1: we've seen an odd number of 1s so far
The transition function is easy:

> If you see a 0, stay where you are; the number of 1s hasn't
changed

> If you see a 1, move from sy to si, and from s; to sg
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Finite Automata: Formal Definition

A (deterministic) finite automaton is a tuple M = (S, 1, f, sp, F):

>

v

v

v

S is a finite set of states;
I is a finite input alphabet (e.g. {0,1}, {a,...,z})
f is a transition function; f : S x| — S

» f describes what the next state is if the machine is in state s
and sees input i € /.

sp € S is the initial state;
F C S is the set of final states.
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Example:

> S = {So, 51,52, 53}

» | ={0,1}

» = {So, 53}

» The transition function f is described by the graph;

> f(S(),O) = 50, f(So,].) = 51, f(Sl,O) =50, .-

You should be able to translate back and forth between finite
automata and the graphs that describe them.
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Describing Languages

The language accepted (or recognized) by an automaton is the set
of strings that it accepts.

> A language is a set of strings

We need tools for describing languages.
» If A and B are sets of strings, then AB, the concatenation of
Aand B,is {ab: a€ A, be B}.
» Example: If A= {0,11}, B = {111,00}, then
» AB = {0111,000, 11111, 1100}
» BA = {1110,11111,000,0011}
» Define A" inductively:
» A% = {)\}: X is the empty string
> Ax = x\ = x for all strings x
> A]' = A
> An+1 — AA"
> A* = U2 A"



Describing Languages

The language accepted (or recognized) by an automaton is the set
of strings that it accepts.

> A language is a set of strings

We need tools for describing languages.
» If A and B are sets of strings, then AB, the concatenation of
Aand B,is {ab: a€ A, be B}.
» Example: If A= {0,11}, B = {111,00}, then
» AB = {0111,000, 11111, 1100}
» BA = {1110,11111,000,0011}
» Define A" inductively:
» A% = {)\}: X is the empty string
> Ax = x\ = x for all strings x
» Al=A
> AL = AA7
> AY = U A
» What's {0,1}"? {0,1}*? {11}*?
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Regular Expressions
A regular expression is an algebraic way of defining a pattern
Definition: The set of regular expressions over | (where | is an
input set) is the smallest set S of expressions such that:

» the symbol () € S (that should be a boldface ()

» the symbol A € S (that should be a boldface \)

» the symbol x € S is a regular expression if x € [;

» if E; and E> are in S, then so are (E1E3), (E; UE) and Ej.
That is, we start with the empty set, A, and elements of /, then
close off under union, concatenation, and .

» A regular set is a syntactic object: a sequence of symbols.

» Concatenation, union, and * are overloaded; they're used for
both languages (sets of strings) and regular expressions
(sequences of symbols)

» The parens help disambiguate: ((ab) Uc) # (a(bUc))

» There is an equivalent inductive definition (see homework).

Those of you familiar with the programming language Perl or Unix
searches should recognize the syntax ...
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Each regular expression E over I defines a subset of /*, denoted
L(E) (the language of E) in the obvious way:

> L(0) = 0;
> L(A) ={Ah
> L(x) = {x}
> L(ElEz): (E]_)L(Ez);
> L(E1 @] E2) = L(El) @) L(Ez),
> L(E*) = L(E)*.
Examples:

» What's L(0*10%10%)?
» What's L((0*10%10%)")? L(0*(0*10*10%)*)?
» L(0*(0"10*10%)*) is the language accepted by the parity
automaton!
» If X ={a, ,9} U Punctuation, what is
TRV ATAYETR IS
» Punctuation consists of the punctuation symbols (comma,
period, space, etc.)
» Y is the input alphabet
> Note that
L(EHalpemX*) = £*{HHaHI}{p}HeHrH{n}E".
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Can you define an automaton that accepts exactly the strings in
> *HalpernX*?

» How many states would you need?
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Can you define an automaton that accepts exactly the strings in
> *HalpernX*?
» How many states would you need?

What language is represented by the automaton in the original
example:
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Can you define an automaton that accepts exactly the strings in
> *HalpernX*?
» How many states would you need?

What language is represented by the automaton in the original
example:

» ((10)*0*((110) U (111))*)*
» Perhaps clearer: ((0U1)*0U111)*
> It's not easy to prove this formally!
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What language is accepted by the following automata:

1 0,1

0
start
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What language is accepted by the following automata:

1 0,1

L(1%) = {1)*
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What language is accepted by the following automata:

1 0,1

L(1%) = {1)*

L(1U01) = {1,01}
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0 0,1 0,1
0
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0 0,1 0,1
0

L(0*10(0 U 1)*) = {0}*{10}{0,1}*
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Nondeterministic Finite Automata

So far we've considered deterministic finite automata (DFA)
» what happens in a state is completely determined by the input
symbol read
Nondeterministic finite automata allow several possible next states
when an input is read.

Formally, a nondeterministic finite automaton is a tuple
M = (S,I,f,sy, F). All the components are just like a DFA,
except now f : S x | — 2° (before, f: S x | = S).
» if s’ € f(s,i), then s’ is a possible next state if the machines
is in state s and sees input i.
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We can still use a graph to represent an NFA. There might be
several edges coming out of a state labeled by i € /, or none. In
the example below, there are two edges coming out of sy labeled 0,
and none coming out of s4 labeled 1.

» Can either stay in sp or move to s,

» On input 111, get stuck in s4 after 11, so 111 not accepted.

16
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» An NFA M accepts (or recognizes) a string x if it is possible
to get to a final state from the start state with input x.

» The language L is accepted by an NFA M consists of all
strings accepted by M.

What language is accepted by this NFA:
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» An NFA M accepts (or recognizes) a string x if it is possible
to get to a final state from the start state with input x.

» The language L is accepted by an NFA M consists of all
strings accepted by M.

What language is accepted by this NFA:

L(0*01 U 0%11)
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Equivalence of Automata

Every DFA is an NFA, but not every NFA is a DFA.
» Do we gain extra power from nondeterminism?

> Are there languages that are accepted by an NFA that can't be
accepted by a DFA?
» Somewhat surprising answer: NO!

Define two automata to be equivalent if they accept the same
language.

Example:

0 0 01

1 0,1
DD DO
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Theorem: Every nondeterministic finite automaton is equivalent
to some deterministic finite automaton.
Proof: Given an NFA M = (S, 1, f, s, F), let
M = (S, 1, {so}, F'), where
» S =2°
» f'(Ai) = {t: t € f(s,i) for some s € A} € 2°
» 129 x| = 2% (ie, S x1 =5
» FF={A:ANF #0}
Thus,
> the states in M’ are subsets of states in M;
» the final states in M’ are the sets which contain a final state
in M;
> in state A, given input /, the next state consists of all possible
next states from an element in A.
M’ is deterministic.
» This is called the subset construction.
» The states in M’ are subsets of states in M.
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We want to show that M accepts x iff M’ accepts x.

> Let x = xq...xk.
» If M accepts x, then there is a sequence of states sp, ..., Sk
such that s, € F and sj1 € f(si, Xi+1)-
» That's what it means for an NFA M to accept x
> Sp,...,Sk Is a possible sequence of states that M goes through
on input x
> It's only one possible sequence: M is an NFA

> Define Ay, ..., Ak inductively:
Ao = {So} and A;+1 = f/(A,',X,'Jrl).
» Intuitively, A; is the set of states that M could be in after
seeing xj ...X;

» Remember: a state in M’ is a set of states in M.
» M’ is deterministic: this sequence is unique.

» An easy induction shows that s; € A;.

» Therefore s, € Ak, so AxNF # (.

» Conclusion: A, € F/, so M’ accepts x.
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For the converse, suppose that M’ accepts x

>

Let Ao, ..., Ak be the sequence of states that M’ goes
through on input x.

Since A, N F # (), there is some t, € AN F.

By induction, if 1 < j < k, can find t,_; € Ax_;j such that
tk—j+1 € f(th—j, Xk—j)-

Since Ap = {so}, we must have sy = tg.

Thus, tg ...tk is an accepting path for x in M

Conclusion: M accepts x
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Notes:
» Michael Rabin and Dana Scott won a Turing award for
defining NFAs and showing they are equivalent to DFAs
» This construction blows up the number of states:
> |S] = oIS
» Sometimes you can do better; in general, you can't



Regular Languages and Finite Automata

Some notation:

» Language L is regular iff L = L(E) for some regexp E.

» L(M) is the language accepted by the automaton M
Theorem: L = L(M) for some automaton M iff L is regular.

First we'll show that every regular language is accepted by some
finite automaton:

Proof: We show that L(E) is accepted by a finite automaton by
induction on the (length/structure) of E. We need to show that
» ) = L(0) = L(M) for some finite automaton M
» Easy: build an automaton where no input ever reaches a final
state
» {A} = L(\) = L(M) for some finite automaton M
» Easy: M has two states, sp and sy, sp is the only accepting
state, but every non-empty string ends leads to s;.
» For each x € I, {x} = L(x) = L(M) for some automaton M
» Easy: an automaton with states {sp, s1, 5.}, only s is an
accepting state, x leads from sy to s3, all other nonempty
strings lead to s;.
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We next show that L(E;1Ej) is accepted by some automaton.

Suppose that L(E;) = A, L(E2) = B. By the induction hypothesis,

there exist automata My = (Sa, I, fa, sa, Fa) and

Mg = (SB, I, g, sg, FB) such that A = L(MA) and B = L(MB).
Suppose that My and Mg and NFAs, and S4 and Sg are disjoint
(without loss of generality).

Idea: We hook My and Mg together. Let NFA
Mag = (SA U Sg, I, fag, sa, FAB): where
. FeUFs if Xe B;
> Fas = { Fg otherwise
> t € fag(s,i) if either
» s€ Sapand t € fa(s, i), or

» s€ Sgand t € fg(s,i), or
» s€ Faand t € fg(sg, i) (“switch” from M, to Mg)

Idea: given input xy € AB, the machine “guesses’ when to switch
from running M4 to running Mp.

Claim: L(Mag) = AB.
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Proof: There are two parts to this proof:

1. Showing that if x € AB, then x € L(Mag).

2. Show that if x € L(Mag), then x € AB.
For part 1, suppose that x = ab € AB, where a = a; ... a) and
b= by ...by. Then there exists an accepting path for a in M4 and
one for b in Mg; that is, a sequence of states sp,...,sx € Sp and a
sequence of states tg,...,t, € Sg such that

> 5o = sa and ty = sg;

> siy1 € fa(si,aip1) and tipy € fa(t;, biy1)

> s € Fpand t,, € Fp.
That means that after reading a, Mag could be in state s. If
b=\, Map accepts a (since sy € Fa C Fag if A € B). Otherwise,

Mapg can continue to ti, ..., ty, when reading b, so it accepts ab
(since ty, € Fg C Fag).
> is, S9,...,Sk, t1,...,tm IS an accepting path for ab

> Note that there is no ty; we go from s to t;
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For part 2, suppose that x = ¢; ... ¢, is accepted by Mag. That

means that there is a sequence of states sp,...,S, € S4 U Sg such
that
> So = SaA

> siv1 € fag(si, Cit1)
> s, € Fag
If s, € Fa, then A € B, sp,...,5, C Sa (since once Mag moves to

a state in Sg, it never moves to a state in Sa), so x is accepted by
Ma. Thus, x € AC AB.

26
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For part 2, suppose that x = ¢; ... ¢, is accepted by Mag. That

means that there is a sequence of states sp,...,S, € S4 U Sg such
that

> So = SA

> siy1 € fag(si; Giy1)

> s, € Fag
If s, € Fa, then A € B, sp,...,5, C Sa (since once Mag moves to

a state in Sg, it never moves to a state in Sa), so x is accepted by
Myu. Thus, x € AC AB.

If s, € Fp, let s; be the first state in the sequence in Sg. Then
S0,---,5—1 C Sa, Sj—1 € Fa, s0 c1...cj—1 is accepted by M4, and
hence is in A. Moreover, sg,s;j,...,s, C Sg (once Mag is in a
state of Sg, it never moves to a state of S4), so ¢j...cp is
accepted by Mg, and hence is in B. Thus,
x=(c1...¢i—1)(¢j...cn) € AB.

26
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We next show that L(E; U Ejy) is accepted by some automaton.
» Suppose that A= L(E;) and B = E»).
» By the induction hypothesis, there exist automata
MA = (SA, /, fA, SA, FA) and MB = (SB, /, fB, SB, FB) such
that A= L(M,) and B = L(Mp).
» Again, assume without loss of generality that M4 and Mg and
NFAs, and that S5 and Sg are disjoint.

Idea: given input x € AU B, the machine “guesses” whether to
run My or Mg.
> Maug = (SA USgU {So}, I, fauB, So, FAUB), where
> 5o is a new state, not in S5, U Sg
fa(s, i) if s € Sa
> fAug(S, I) = { fB(S7 I) if s € Sg
f'—A(SA7 I) U fB(SB, I) if s = s
. FAuB:{ FAUFBU{S()} If)\EAUB
FaU Fg otherwise.
» We have to prove that L(Maug) = AU B; this is
straightforward.
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Last step: show that L(E*) is regular.

As before, suppose that A = L(E), and that M = Sa, [, fa, sa, Fa)
accepts M.

My = (SA U {So}, I, fa«,s0, Fa U {50}), where
> Sp is a new state, not in Sy;

fA(S, f) if s e SA — FA;
> fA*(S, I): fA(S, i)UfA(SA,i) if s € Fpy;
fA(SA,f) if s = S0

We now have to prove that L(Ma-) = A*.
> Left for homework!
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Next we'll show that every language accepted by a finite
automaton is regular:

Proof: Fix an automaton M with states {sp,...,s,}. Can assume
wlog (without loss of generality) that M is deterministic.

> a language is accepted by a DFA iff it is accepted by a NFA.

Let 5(si,sj, k) be the set of strings that force M from state s; to s;
on a path such that every intermediate state is {sp, ..., Sk}

» E.g., S(sa, ss5,2) consists of all strings that force M from s4 to
s5 on a path that goes through only sp, s1, and s, (in any
order, perhaps with repeats).

Note that a string x is accepted by M iff x € S(sp, s, n) for some
final state s. Thus, L(M) is the union over all final states s of
S(so, s, n).
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An example:

0,1 0,1
start

01

S(s0,51,0) = {0,1}; S(s0,51,1) = {0, 1};
S(so, s1,2) = {all strings of length 1 mod 3}.
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An example:

0,1 0,1
start

01

S(s0,51,0) = {0,1}; S(s0,51,1) = {0, 1};
S(so, s1,2) = {all strings of length 1 mod 3}.

We will prove by induction on k that S(s;, sj, k) is regular.

» Why not just take s; = 557
» We need a stronger induction hypothesis
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An example:

0,1 0,1
start

01

S(s0,51,0) = {0,1}; S(s0,51,1) = {0, 1};
S(so, s1,2) = {all strings of length 1 mod 3}.

We will prove by induction on k that S(s;, sj, k) is regular.
» Why not just take s; = 557
» We need a stronger induction hypothesis
Base case:
Lemma 1: S(s;,s;, —1) is regular.

Proof: For a string o to be in S(s;,s;, —1), it must go directly
from s; to s;, without going through any intermediate states.
Thus, 0 must be some subset of / (possibly empty) together with
A if s; = s;. Either way, S(s;, sj, —1) is regular.
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Lemma 2: If 5; # si11, then S(s;, s,k +1) =
S(si,sj, k) U S(si, sk, K)(S(Sk41s Sk+15 k) *S(Sk+1, 555 k).
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Lemma 2: If 5; # si11, then S(s;, s,k +1) =
S(si,Sj, k) U S(si, Skt15 k) (S(Sk+1, Skt15 &) *S(Sk41, 5j5 k)-
Proof: If a string o forces M from s; to s; on a path with
intermediates states all in {sp, ..., Sk+1}, then the path either does
not go through s, at all, so is in S(s;, sj, k), or goes through
sk+1 some finite number of times, say m. That is, the path looks
like this:
Sj+. Sk4+1---Sk+1---Sk+1---5f

where all the states in the ... part are in {sp,...,sx}. Thus, we
can split up the string o into m 4+ 1 corresponding pieces:

> 0o that takes M from s; to sky1,

» each of 01,...,0, take M from s, 1 back to sii1
> omy1 takes M from s, to s;.
Thus,
> Op € S(S;,Sk+1,k)
> 01,...,0m are all in S(sk+1, Sk+1, k)
> Omt1 € S(Sk+1,5), k)
>» SO0 =0001...0m+1 €

S(si,sj, k) U S(siy Skq1, k)(S(Skt1, Skr1, k))*S(Sk41, 5j, k)
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Lemma 3: If 5; = 5,41, then

S(S;,Sj, k + ].) = S(S;,Sj, k) U S(Si,Sj, k)(S(Sj,Sj, k))*

Proof: Same idea as previous proof.
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Lemma 3: If 5; = 5,41, then

S(S;,Sj, k + ].) = S(S;,Sj, k) U S(Si,Sj, k)(S(Sj,Sj, k))*

Proof: Same idea as previous proof.
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Lemma 3: If 5; = 5,41, then

5(5,', Sjs k + ].) = S(S,', Sj k) U 5(5;, Sj, k)(S(Sj, Sj, k))*
Proof: Same idea as previous proof.

Lemma 4: S(s;,s;, N) is regular for all N with —1 < N < n.

Proof: An easy induction. Lemma 1 gives the base case; Lemmas
2 and 3 give the inductive step.
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Lemma 3: If 5; = 5,41, then

5(5,', Sjs k+ ].) = S(S,', Sj k) U 5(5;, Sj, k)(S(Sj, Sj, k))*

Proof: Same idea as previous proof.

Lemma 4: S(s;,s;, N) is regular for all N with —1 < N < n.
Proof: An easy induction. Lemma 1 gives the base case; Lemmas

2 and 3 give the inductive step.

The language accepted by M is the union of the sets S(sp, s, n)
such that s’ is a final state. Since regular languages are closed
under union, the result follows.
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We can use the ideas of this proof to compute the regular language
accepted by an automaton.

5(507507 ) = {)‘)O}v 5(50551) _1) = {1}v e

> S(so,50,0) = 0%; S(s1,50,0) =00*; S(sp,s1,0) =01,
5(5 S1, )—00* ;

5(50,507 )= (0*(10) )

We can methodically build up to S(so, o, 2), which is what we
want (since s3 is unreachable).
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A Non-Regular Language
Not every language is regular/accepted by a DFA.
Theorem: L ={0"1":n=0,1,2,...} is not regular.
Proof: Suppose, by way of contradiction, that L is regular. Then
there is a DFA M = (S5,{0,1}, f, sp, F) that accepts L. Let
N =S| (i.e., there are N states in M). Let ty,..., toy be the path
of states that M visits on input ON1V
» Thus, tg = sp and typ is an accepting state
» We must have f(t;,0) = tj1q for i =0,...,N—1.
Since M has N states, by the pigeonhole principle, at least two of

to, ..., ty are the same. Suppose t; = t;, where i < j and
j—i=d.
Claim: M accepts 0V091N, and ON0291N, oNO391N, ... So M

does not accept L.

Proof: Starting in ty = s, 0’ brings the machine to t;; another od
bring the machine back to t; (since tj = tj14 = t;); another o

bring machine back to t; again. After going around the loop for a
while, then can continue to toyy and accept. 34/37



The Pumping Lemma
The techniques of the previous proof generalize. If M is a DFA and
x is a string accepted by M such that |x| > |S|
> |S| is the number of states; |x| is the length of x
then there are strings u, v, w such that
> X = uvw,
> uv] < S|,
> v >1,
» uv'w is accepted by M, for i =0,1,2,....
The proof is the same as on the previous slide.
» x was 071", u =0/, v =0t, w=0N-t-711N,
We can use the Pumping Lemma to show that many languages are
not regular
> {1”2 :n=0,1,2,...}: homework
» {0°"1":n=0,1,2,...}: homework
» {1": nis prime}
> ...
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More Powerful Machines
Finite automata are very simple machines.
» They have no memory
» Roughly speaking, they can't count beyond the number of
states they have.
Pushdown automata have states and a stack which provides
unlimited memory.
» They can recognize all languages generated by context-free
grammars (CFGs)
» CFGs are typically used to characterize the syntax of
programming languages
» They can recognize the language {0"1" : n=0,1,2,...}, but
not the language L' = {0"1"2" : n=0,1,2,...}
Linear bounded automata can recognize L.
» More generally, they can recognize context-sensitive grammars
(CSGs)
» CSGs are (almost) good enough to characterize the grammar
of real languages (like English)
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Most general of all: Turing machine (TM)

» Given a computable language, there is a TM that accepts it.

» This is essentially how we define computability.

If you're interested in these issues, take CS 4810!
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