
Graphs and Trees

Graphs and trees come up everywhere.

I We can view the internet as a graph (in many ways)
I who is connected to whom

I Web search views web pages as a graph
I Who points to whom

I Niche graphs (Ecology):
I The vertices are species
I Two vertices are connected by an edge if they compete (use

the same food resources, etc.)

Niche graphs give a visual representation of competitiveness.
I Influence Graphs

I The vertices are people
I There is an edge from a to b if a influences b

Influence graphs give a visual representation of power
structure.

There are lots of other examples in all fields . . .



Terminology and Notation

A graph G is a pair (V ,E ), where V is a set of vertices or nodes
and E is a set of edges or branches; an edge is a set {v , v ′} of two
not necessarily distinct vertices (i.e., v , v ′ ∈ V ).

I We sometimes write G (V ,E ) instead of G

I If V = ∅, then E = ∅, and G is called the null graph.

We usually represent a graph pictorially.

I A vertex with no edges incident to it is said to be isolated

I If {v} ∈ E , then there is a loop at v

I G ′(V ′,E ′) is a subgraph of G (V ,E ) if V ′ ⊆ V and E ′ ⊆ E .



Directed Graphs

Note that {v , u} and {u, v} represent the same edge.

In a directed graph (digraph), the order matters. We denote an
edge as (v , v ′) rather than {v , v ′}. We can identify an undirected
graph with the directed graph that has edges (v , v ′) and (v ′, v) for
every edge {v , v ′} in the undirected graph.

Two vertices v and v ′ are adjacent if there is an edge between
them, i.e., {v , v ′} ∈ E in the undirected case, (v , v ′) ∈ E or
(v ′, v) ∈ E in the directed case.
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Representing Relations Graphically

A relation R on S is a subset of S × S

I a set of ordered pairs, where both components are in S .

Given a relation R on S , we can represent it by the directed graph
G (V ,E ), where

I V = S and

I E = {(s, t) : (s, t) ∈ R}
Example: Represent the < relation on {1, 2, 3, 4} graphically.



Properties of Relations

I A relation R on S is reflexive if (s, s) ∈ R for all s ∈ S ;

I A relation R on S is symmetric if (s, t) ∈ R whenever
(t, s) ∈ R;

I A relation R on S is transitive if (s, t) ∈ R and (t, u) ∈ R
implies that (s, u) ∈ R.

Examples:

I < is transitive, but not reflexive or symmetric

I ≤ is reflexive and transitive, but not symmetric

I equivalence mod m is reflexive, symmetric, and transitive

I “sibling-of” is symmetric. Is it transitive or reflexive?

I “ancestor-of” is transitive (and reflexive, if you’re your own
ancestor)

How does the graphical representation show that a graph is

I reflexive?

I symmetric?

I transitive?



Degree

In a directed graph G (V ,E ), the indegree of a vertex v is the
number of edges coming into it

I indegree(v) = |{v ′ : (v ′, v) ∈ E}|
The outdegree of v is the number of edges going out of it:

I outdegree(v) = |{v ′ : (v , v ′) ∈ E}|
The degree of v , denoted deg(v), is the sum of the indegree and
outdegree. For an undirected graph, it doesn’t make sense to talk

about indegree and outdegree. The degree of a vertex is the sum
of the edges incident to the vertex, except that we double-count all
self-loops.

I Why? Because things work out better that way



Theorem: Given a graph G (V ,E ),

2|E | =
∑
v∈V

deg(v)

Proof: For a directed graph: each edge contributes once to the
indegree of some vertex, and once to the outdegree of some vertex.
Thus |E | = sum of the indegrees = sum of the outdegrees.

Same argument for an undirected graph without loops. We need to
double-count the loops to make this right in general.



Handshaking Theorem
Theorem: The number of people who shake hands with an odd
number of people at a party must be even.

Proof: Construct a graph, whose vertices are people at the party,
with an edge between two people if they shake hands. The number
of people person p shakes hands with is deg(p). Split the set of all
people at the party into two subsets:

I A = those that shake hands with an even number of people

I B= those that shake hands with an odd number of people

∑
p

deg(p) =
∑
p∈A

deg(p) +
∑
p∈B

deg(p)

I We know that
∑

p deg(p) = 2|E | is even.

I
∑

p∈A deg(p) is even, because for each p ∈ A, deg(p) is even.

I Therefore,
∑

p∈B deg(p) is even.

I Therefore |B| is even (because for each p ∈ B, deg(p) is odd,
and if |B| were odd, then

∑
p∈B deg(p) would be odd).
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Graph Isomorphism

When are two graphs that may look different when they’re drawn,
really the same?

Answer: G1(V1,E1) and G2(V2,E2) are isomorphic if they have the
same number of vertices (|V1| = |V2|) and we can relabel the
vertices in G2 so that the edge sets are identical.

I Formally, G1 is isomorphic to G2 if there is a bijection
f : V1 → V2 such that {v , v ′} ∈ E1 iff ({f (v), f (v ′)} ∈ E2.

I Note this means that |E1| = |E2|



Checking for Graph Isomorphism

There are some obvious requirements for G1(V1,E1) and
G2(V2,E2) to be isomorphic:

I |V1| = |V2|
I |E1| = |E2|
I for each d , #(vertices in V1 with degree d) = #(vertices in

V1 with degree d)

Checking for isomorphism is in NP:

I Guess an isomorphism f and verify

I We believe it’s not in polynomial time and not NP complete.



Paths

Given a graph G (V ,E ).

I A path in G is a sequence of vertices (v0, . . . , vn) such that
{vi , vi+1} ∈ E ((vi , vi+1) in the directed case).

I If v0 = vn, the path is a cycle

I An Eulerian path/cycle is a path/cycle that traverses every
every edge in E exactly once

I A Hamiltonian path/cycle is a path/cycle that passes through
each vertex in V exactly once.

I A graph with no cycles is said to be acyclic



Connectivity
I An undirected graph is connected if there is for all vertices u,

v , (u 6= v) there is a path from u to v .
I A digraph is strongly connected if for all vertices u, v (u 6= v)

there is a path from u to v and from v to u.
I If a digraph is weakly connected if, for every pair u, v , there is

a path from u to v in the underlying undirected graph.
I This is the definition in Rosen; other books use different

definitions.

I A connected component of an (undirected) graph G is a
connected subgraph G ′ which is not the subgraph of any
other connected subgraph of G .

Example: We want the graph describing the interconnection
network in a parallel computer:

I the vertices are processors
I there is an edge between two nodes if there is a direct link

between them.
I if links are one-way links, then the graph is directed

We typically want this graph to be connected.
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Trees

A tree is a digraph such that

(a) with edge directions removed, it is connected and acyclic
I You can remove either the assumption that it is acyclic
I If it is finite, you can alternatively remove the assumption that

it is connected

(b) every vertex but one, the root, has indegree 1

(c) the root has indegree 0
I If there are only finitely many nodes, you can remove either

the assumption that the root has indegree 0 or the assumption
that the nodes other than the root have degree 1

Trees come up everywhere:

I when analyzing games

I representing family relationships



Complete Graphs and Cliques

I An undirected graph G (V ,E ) is complete if it has no loops
and for all vertices u v (u 6= v), {u, v} ∈ E .

I How many edges are there in a complete graph with n vertices?

A complete subgraph of a graph is called a clique

I The clique number of G is the size of the largest clique in G .



Bridges of Königsberg

Is there a city tour that crosses
each bridge exactly once?

Braun & Hogenberg, “Civitates Orbis Terrarum”, Cologne 1585. Photoshopped to clean up right side and add 7th bridge.

Remember this from the first class?



Bridges of Königsberg

Leonhard Euler
(1707-1783)

Braun & Hogenberg, “Civitates Orbis Terrarum”, Cologne 1585. Photoshopped to clean up right side and add 7th bridge.



Bridges of Königsberg

B

A
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Braun & Hogenberg, “Civitates Orbis Terrarum”, Cologne 1585. Photoshopped to clean up right side and add 7th bridge.

Euler’s key insight: represent the problem as a graph



Eulerian Paths

Recall that G (V ,E ) has an Eulerian path if it has a path that goes
through every edge exactly once. It has an Eulerian cycle (or
Eulerian circuit) if it has an Eulerian path that starts and ends at
the same vertex.

How can we tell if a graph has an Eulerian path/circuit?

What’s a necessary condition for a graph to have an Eulerian
circuit?
Count the edges going into and out of each vertex:

I Each vertex must have even degree!

This condition turns out to be sufficient too.



Theorem: A connected (multi)graph has an Eulerian cycle iff each
vertex has even degree.

Proof: The necessity is clear: In the Eulerian cycle, there must be
an even number of edges that start or end with any vertex.

To see the condition is sufficient, we provide an algorithm for
finding an Eulerian circuit in G (V ,E ).

First step: Follow your nose to construct a cycle.

Second step: Remove the edges in the cycle from G . Let H be the
subgraph that remains.

I every vertex in H has even degree

I H may not be connected; let H1, . . . ,Hk be its connected
components.

Third step: Apply the algorithm recursively to H1, . . . ,Hk , and
then splice the pieces together.
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Finding cycles
First, find an algorithm for finding a cycle:

Input: G (V ,E ) [a list of vertices and edges]
procedure Pathgrow(V ,E ,v)

[v is first vertex in cycle]
P ← () [P is sequence of edges on cycle]
w ← v [w is last vertex in P]
repeat until I (w)− P = ∅

[I (w) is the set of edges incident on w ]
Pick e ∈ I (w)− P
w ← other end of e
P ← P · e [append e to P]

return P

Claim: If every vertex in V has even degree, then P will be a cycle

I Loop invariant: In the graph G (V ,E − P), if the first vertex
(v) and last vertex (w) in P are different, they have odd
degree; all the other vertices have even degree.
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Finding Eulerian Paths

procedure Euler(V ,E ,v)
//G (V ,E ) is a connected undirected graph//
//v ∈ V is arbitrary//
//output is an Eulerian cycle in G//

Pathgrow(V ′,E ′,v ′) [returns cycle P in G ]
if P is not Eulerian
then delete the edges in P from E ;

let G1(V1,E1), . . . ,Gn(Vn,En) be
the resulting connected components

let vi be a vertex in Vi also on P
for i = 1 to n

Euler(Vi , Ei , vi ) [returns Eulerian cycle Ci

Attach Ci to P at vi
endfor

return P



Corollary: A connected multigraph has an Eulerian path (but not
an Eulerian cycle) if it has exactly two vertices of odd degree.



Hamiltonian Paths

Recall that G (V ,E ) has a Hamiltonian path if it has a path that
goes through every vertex exactly once. It has a Hamiltonian cycle
(or Hamiltonian circuit) if it has a Hamiltonian path that starts
and ends at the same vertex.

There is no known easy characterization or algorithm for checking
if a graph has a Hamiltonian cycle/path.



Graph Coloring

How many colors do you need to color the vertices of a graph so
that no two adjacent vertices have the same color?

I Application: scheduling
I Vertices of the graph are courses
I Two courses taught by same prof are joined by edge
I Colors are possible times class can be taught.

Lots of similar applications:
I E.g. assigning wavelengths to cell phone conversations to

avoid interference.
I Vertices are conversations
I Edges between “nearby” conversations
I Colors are wavelengths.

I Scheduling final exams
I Vertices are courses
I Edges between courses with overlapping enrollment
I Colors are exam times.



Chromatic Number

The chromatic number of a graph G , written χ(G ), is the smallest
number of colors needed to color it so that no two adjacent
vertices have the same color.

A graph G is k-colorable if k ≥ χ(G ).



Determining χ(G )
Some observations:

I If G is a complete graph with n vertices, χ(G ) = n
I If G has a clique of size k , then χ(G ) ≥ k.

I Let c(G ) be the clique number of G : the size of the largest
clique in G . Then

χ(G ) ≥ c(G )

I If ∆(G ) is the maximum degree of any vertex, then

χ(G ) ≤ ∆(G ) + 1 :

I Color G one vertex at a time; color each vertex with the
“smallest” color not used for a colored vertex adjacent to it.

How hard is it to determine if χ(G ) ≤ k?
I It’s NP complete, just like

I determining if c(G ) ≥ k
I determining if G has a Hamiltonian path
I determining if a propositional formula is satisfiable

Can guess and verify.



The Four-Color Theorem

Can a map be colored with four colors, so that no countries with
common borders have the same color?

I This is an instance of graph coloring
I The vertices are countries
I Two vertices are joined by an edge if the countries they

represent have a common border

A planar graph is one where all the edges can be drawn on a plane
(piece of paper) without any edges crossing.

I The graph of a map is planar

Four-Color Theorem: Every map can be colored using at most
four colors so that no two countries with a common boundary have
the same color.

I Equivalently: every planar graph is four-colorable



Four-Color Theorem: History

I First conjectured by Galton (Darwin’s cousin) in 1852

I False proofs given in 1879, 1880; disproved in 1891
I Computer proof given by Appel and Haken in 1976

I They reduced it to 1936 cases, which they checked by
computer

I Proof simplified in 1996 by Robertson, Sanders, Seymour, and
Thomas

I But even their proof requires computer checking
I They also gave an O(n2) algorithm for four coloring a planar

graph

I Proof checked by Coq theorem prover (Werner and Gonthier)
in 2004

I So you don’t have to trust the proof, just the theorem prover

Note that the theorem doesn’t apply to countries with
non-contiguous regions (like U.S. and Alaska).



Bipartite Graphs

A graph G (V ,E ) is bipartite if we can partition V into disjoint
sets V1 and V2 such that all the edges in E joins a vertex in V1 to
one in V2.

I A graph is bipartite iff it is 2-colorable

I Everything in V1 gets one color, everything in V2 gets the
other color.

Example: Suppose we want to represent the “is or has been
married to” relation on people. Can partition the set V of people
into males (V1) and females (V2). Edges join two people who are
or have been married.

Example: We can represent the “has taken a course from”
relation by taking the nodes to be professors and students with an
edge between s and t if student s has taken a course from
professor t. Is this bipartite?



Characterizing Bipartite Graphs
Theorem: G is bipartite iff G has no odd-length cycles.

Proof: Suppose that G is bipartite, and it has edges only between
V1 and V2. Suppose, to get a contradiction, that
(x0, x1, . . . , x2k , x0) is an odd-length cycle. If x0 ∈ V1, then x2 is in
V1. An easy induction argument shows that x2i ∈ V1 and
x2i+1 ∈ V2 for 0 = 1, . . . , k . But then the edge between x2k and x0
means that there is an edge between two nodes in V1; this is a
contradiction.

I Get a similar contradiction if x0 ∈ V2.

Conversely, suppose G (V ,E ) has no odd-length cycles.
I Partition the vertices in V into two sets as follows:

I Start at an arbitrary vertex x0; put it in V0.
I Put all the vertices one step from x0 into V1

I Put all the vertices two steps from x0 into V0;
I . . .

This construction works if G is connected and has no odd-length
cycles.

I What if G isn’t connected?

This construction also gives a polynomial-time algorithm for
checking if a graph is bipartite.



Searching Graphs
Suppose we want to process data associated with the vertices of a
graph. This means we need a systematic way of searching the
graph, so that we don’t miss any vertices.

There are two standard methods.
I Breadth-first search
I Depth-first search

It’s best to think of these on a tree:

Breadth-first search would visit the nodes in the following order:

1, 2, 3, . . . , 10

Depth-first search would visit the nodes in the following order:

1, 2, 4, 5, 7, 8, 11, 3, 6, 9, 10



Breadth-First Search

Input G (V ,E ) [a connected graph]
v [start vertex]

Algorithm Breadth-First Search
visit v
V ′ ← {v} [V ′ is the vertices already visited]
Put v on Q [Q is a queue]
repeat while Q 6= ∅

u ← head(Q) [head(Q) is the first item on Q]
for w ∈ A(u) [A(u) = {w |{u,w} ∈ E}]

if w /∈ V ′

then visit w
Put w on Q
V ′ ← V ′ ∪ {w}

endfor
Delete u from Q

The BFS algorithm basically finds a tree embedded in the graph.



BFS and Shortest Length Paths

If all edges have equal length, we can extend this algorithm to find
the shortest path length from v to any other vertex:

I Store the path length with each node when you add it.

I Length(v) = 0.

I Length(w) = Length(u) + 1

With a little more work, can actually output the shortest path from
u to v .

I This is an example of how BFS and DFS arise unexpectedly in
a number of applications.

I We’ll see a few more



Depth-First Search

Input G (V ,E ) [a connected graph]
v [start vertex]

Algorithm Depth-First Search
visit v
V ′ ← {v} [V ′ is the vertices already visited]
Put v on S [S is a stack]
u ← v
repeat while S 6= ∅
if A(u)− V ′ 6= ∅
then Choose w ∈ A(u)− V ′

visit w
V ′ = V ′ ∪ {w}
Put w on stack
u ← w

else u ← top(S) [Pop the stack]
endif



DFS uses backtracking

I Go as far as you can until you get stuck

I Then go back to the first point you had an untried choice



Spanning Trees

A spanning tree of a connected graph G (V ,E ) is a connected
acyclic subgraph of G , which includes all the vertices in V and
only (some) edges from E .

Think of a spanning tree as a “backbone”; a minimal set of edges
that will let you get everywhere in a graph.

I Technically, a spanning tree isn’t a tree, because it isn’t
directed.

The BFS search tree and the DFS search tree are both spanning
trees.

I Rosen gives algorithms to produce minimum weight spanning
trees

I That’s done in CS 4820, so we won’t do it here.



More on Relations

Recall that a relation on S is a subset of S × S , and that a relation
can be represented using a graph

I The nodes are elements of S ; there is an edge from s to t iff
(s, t) ∈ R.

More generally, a relation R on S × T is a subset of S × T .

I We can represent this graphically using a graph where the
nodes are labeled with elements of S ∪ T

I The graph is bipartite: edges only go from nodes in S to
nodes in T .

A function f : S → T is a special case of a relation on S × T ,
where each node in S has outdegree 1.

I for every elemenet in S , there’s a unique element in T that’s
f (s)

Put another way, relations just generalize functions.
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I If R and R ′ are relations on S , then so is R ◦ R ′: relation:

R ◦ R ′ = {(s, u) : exists t((s, t) ∈ R ′, (t, u) ∈ R)}.

I R2 = R ◦ R consists of all pairs such thath there is a path of
length i2 in the graph representing R.

I What’s Rk?



Transitive Closure

The transitive closure of a relation R is the smallest relation R∗

such that

1. R ⊂ R∗

2. R∗ is transitive (so that if (u, v), (v ,w) ∈ R∗, then so is
(u,w)).

Can prove that R∗ = R ∪ R2 ∪ R3 ∪ . . ..

Example: Suppose R = {(1, 2), (2, 3), (1, 4)}.
I R∗ = {(1, 2), (1, 3), (2, 3), (1, 4)}
I we need to add (1, 3), because (1, 2), (2, 3) ∈ R

Note that we don’t need to add (2,4).

I If (2,1), (1,4) were in R, then we’d need (2,4)

I (1,2), (1,4) doesn’t force us to add anything (it doesn’t fit the
“pattern” of transitivity.

If R is already transitive, then R∗ = R.

Lemma: R is transitive iff R2 ⊆ R.
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Equivalence Relations

I A relation R is an equivalence relation if it is reflexive,
symmetric, and transitive

I = is an equivalence relation
I Parity is an equivalence relation on N;

(x , y) ∈ Parity if x − y is even


