
Number Theory

Mathematics is the queen of sciences and number theory
is the queen of mathematics.

– Carl Friedrich Gauss

But why is it computer science?
I It turns out to be critical for cryptography!



Division
For a, b ∈ Z , a 6= 0, a divides b if there is some c ∈ Z such that
b = ac.

I Notation: a | b
I Examples: 3 | 9, 3 6 | 7

If a | b, then a is a factor of b, b is a multiple of a.

Theorem 1: If a, b, c ∈ Z , then

1. if a | b and a | c then a | (b + c).
2. If a | b then a | (bc)
3. If a | b and b | c then a | c (divisibility is transitive).

Proof: How do you prove this? Use the definition!

I E.g., if a | b and a | c, then, for some d1 and d2,

b = ad1 and c = ad2.

I That means b + c = a(d1 + d2)
I So a | (b + c).

Other parts: homework.

Corollary 1: If a | b and a | c , then a | (mb + nc) for all m, n ∈ Z .
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The division algorithm
Theorem 2: For a ∈ Z and d ∈ N, d > 0, there exist unique
q, r ∈ Z such that a = q · d + r and 0 ≤ r < d .

I r is the remainder when a is divided by d

Notation: r ≡ a (mod d); a mod d = r

Examples:
I Dividing 101 by 11 gives a quotient of 9 and a remainder of 2,

so 101 ≡ 2 (mod 11) and 101 mod 11 = 2.
I Dividing 18 by 6 gives a quotient of 3 and a remainder of 0,

so 18 ≡ 0 (mod 6) and 18 mod 6 = 0.

Proof: The proof is constructive: We define q, r expicitly:
Let q = ba/dc and define r = a− q · d .

I So a = q · d + r with q ∈ Z and 0 ≤ r < d (since q · d ≤ a).

But why are q and d unique?

I Suppose q · d + r = q′ · d + r ′ with q′, r ′ ∈ Z and 0 ≤ r ′ < d .
I Then (q′ − q)d = (r − r ′) with −d < r − r ′ < d .
I The lhs is divisible by d so r = r ′ and we’re done.
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Primes

I If p ∈ N, p > 1 is prime if its only positive factors are 1 and p.
I n ∈ N is composite if n > 1 and n is not prime.

I If n is composite then a | n for some a ∈ N with 1 < a < n
I Can assume that a ≤

√
n.

I Proof: By contradiction:
Suppose n = bc, b >

√
n, c >

√
n. But then bc > n, a

contradiction.

Primes: 2, 3, 5, 7, 11, 13, . . .
Composites: 4, 6, 8, 9, . . .



Primality testing
How can we tell if n ∈ N is prime?

The naive approach: check if k | n for every 1 < k < n.
I But at least 10m−1 numbers are ≤ n, if n has m digits

I 1000 numbers less than 1000 (a 4-digit number)
I 1,000,000 less than 1,000,000 (a 7-digit number)

So the algorithm is exponential time!

We can do a little better

I Skip the even numbers

I That saves a factor of 2 −→ not good enough
I Try only primes (Sieve of Eratosthenes)

I Still doesn’t help much

We can do much better:
I There is a polynomial time randomized algorithm

I We will discuss this when we talk about probability
I In 2002, Agarwal, Saxena, and Kayal gave a (nonprobabilistic)

polynomial time algorithm
I Saxena and Kayal were undergrads in 2002!
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The Fundamental Theorem of Arithmetic

Theorem 3: Every natural number n > 1 can be uniquely
represented as a product of primes, written in nondecreasing size.

I Examples: 54 = 2 · 33, 100 = 22 · 52, 15 = 3 · 5.

Proving that that n can be written as a product of primes is easy
(by strong induction):

I Base case: 2 is the product of primes (just 2)
I Inductive step: If n > 2 is prime, we are done. If not, n = ab.

I Must have a < n, b < n.
I By I.H., both a and b can be written as a product of primes
I So n is product of primes

Proving uniqueness is harder.

I We’ll do that in a few days . . .


