Number Theory

Mathematics is the queen of sciences and number theory is the queen of mathematics.

- Carl Friedrich Gauss

But why is it computer science?

- It turns out to be critical for cryptography!

Division

For $a, b \in Z, a \neq 0$, a divides b if there is some $c \in Z$ such that $b=a c$.

- Notation: $a \mid b$
- Examples: 3|9, 3×7

If $a \mid b$, then a is a factor of b, b is a multiple of a.
Theorem 1: If $a, b, c \in Z$, then

1. if $a \mid b$ and $a \mid c$ then $a \mid(b+c)$.
2. If $a \mid b$ then $a \mid(b c)$
3. If $a \mid b$ and $b \mid c$ then $a \mid c$ (divisibility is transitive).

Proof: How do you prove this? Use the definition!

Division

For $a, b \in Z, a \neq 0$, a divides b if there is some $c \in Z$ such that $b=a c$.

- Notation: $a \mid b$
- Examples: 3|9, 3 X 7

If $a \mid b$, then a is a factor of b, b is a multiple of a.
Theorem 1: If $a, b, c \in Z$, then

1. if $a \mid b$ and $a \mid c$ then $a \mid(b+c)$.
2. If $a \mid b$ then $a \mid(b c)$
3. If $a \mid b$ and $b \mid c$ then $a \mid c$ (divisibility is transitive).

Proof: How do you prove this? Use the definition!

- E.g., if $a \mid b$ and $a \mid c$, then, for some d_{1} and d_{2},

$$
b=a d_{1} \text { and } c=a d_{2} .
$$

- That means $b+c=a\left(d_{1}+d_{2}\right)$
- So $a \mid(b+c)$.

Other parts: homework.

Division

For $a, b \in Z, a \neq 0$, a divides b if there is some $c \in Z$ such that $b=a c$.

- Notation: $a \mid b$
- Examples: $3 \mid 9,3 \nmid 7$

If $a \mid b$, then a is a factor of b, b is a multiple of a.
Theorem 1: If $a, b, c \in Z$, then

1. if $a \mid b$ and $a \mid c$ then $a \mid(b+c)$.
2. If $a \mid b$ then $a \mid(b c)$
3. If $a \mid b$ and $b \mid c$ then $a \mid c$ (divisibility is transitive).

Proof: How do you prove this? Use the definition!

- E.g., if $a \mid b$ and $a \mid c$, then, for some d_{1} and d_{2},

$$
b=a d_{1} \text { and } c=a d_{2} .
$$

- That means $b+c=a\left(d_{1}+d_{2}\right)$
- So $a \mid(b+c)$.

Other parts: homework.
Corollary 1: If $a \mid b$ and $a \mid c$, then $a \mid(m b+n c)$ for all $m, n \in Z$.

The division algorithm

Theorem 2: For $a \in Z$ and $d \in N, d>0$, there exist unique $q, r \in Z$ such that $a=q \cdot d+r$ and $0 \leq r<d$.

- r is the remainder when a is divided by d Notation: $r \equiv a(\bmod d) ; a \bmod d=r$

The division algorithm

Theorem 2: For $a \in Z$ and $d \in N, d>0$, there exist unique $q, r \in Z$ such that $a=q \cdot d+r$ and $0 \leq r<d$.

- r is the remainder when a is divided by d

Notation: $r \equiv a(\bmod d) ; a \bmod d=r$

Examples:

- Dividing 101 by 11 gives a quotient of 9 and a remainder of 2 , so $101 \equiv 2(\bmod 11)$ and $101 \bmod 11=2$.
- Dividing 18 by 6 gives a quotient of 3 and a remainder of 0 , so $18 \equiv 0(\bmod 6)$ and $18 \bmod 6=0$.

The division algorithm

Theorem 2: For $a \in Z$ and $d \in N, d>0$, there exist unique $q, r \in Z$ such that $a=q \cdot d+r$ and $0 \leq r<d$.

- r is the remainder when a is divided by d

Notation: $r \equiv a(\bmod d) ; a \bmod d=r$
Examples:

- Dividing 101 by 11 gives a quotient of 9 and a remainder of 2 , so $101 \equiv 2(\bmod 11)$ and $101 \bmod 11=2$.
- Dividing 18 by 6 gives a quotient of 3 and a remainder of 0 , so $18 \equiv 0(\bmod 6)$ and $18 \bmod 6=0$.
Proof: The proof is constructive: We define q, r expicitly:
Let $q=\lfloor a / d\rfloor$ and define $r=a-q \cdot d$.
- So $a=q \cdot d+r$ with $q \in Z$ and $0 \leq r<d$ (since $q \cdot d \leq a$).

But why are q and d unique?

The division algorithm

Theorem 2: For $a \in Z$ and $d \in N, d>0$, there exist unique $q, r \in Z$ such that $a=q \cdot d+r$ and $0 \leq r<d$.

- r is the remainder when a is divided by d

Notation: $r \equiv a(\bmod d) ; a \bmod d=r$
Examples:

- Dividing 101 by 11 gives a quotient of 9 and a remainder of 2 , so $101 \equiv 2(\bmod 11)$ and $101 \bmod 11=2$.
- Dividing 18 by 6 gives a quotient of 3 and a remainder of 0 , so $18 \equiv 0(\bmod 6)$ and $18 \bmod 6=0$.
Proof: The proof is constructive: We define q, r expicitly:
Let $q=\lfloor a / d\rfloor$ and define $r=a-q \cdot d$.
- So $a=q \cdot d+r$ with $q \in Z$ and $0 \leq r<d$ (since $q \cdot d \leq a$).

But why are q and d unique?

- Suppose $q \cdot d+r=q^{\prime} \cdot d+r^{\prime}$ with $q^{\prime}, r^{\prime} \in Z$ and $0 \leq r^{\prime}<d$.
- Then $\left(q^{\prime}-q\right) d=\left(r-r^{\prime}\right)$ with $-d<r-r^{\prime}<d$.
- The lhs is divisible by d so $r=r^{\prime}$ and we're done.

Primes

- If $p \in N, p>1$ is prime if its only positive factors are 1 and p.
- $n \in N$ is composite if $n>1$ and n is not prime.
- If n is composite then $a \mid n$ for some $a \in N$ with $1<a<n$
- Can assume that $a \leq \sqrt{n}$.
- Proof: By contradiction:

Suppose $n=b c, b>\sqrt{n}, c>\sqrt{n}$. But then $b c>n$, a contradiction.

Primes: $2,3,5,7,11,13, \ldots$
Composites: $4,6,8,9, \ldots$

Primality testing

How can we tell if $n \in N$ is prime?

Primality testing

How can we tell if $n \in N$ is prime?
The naive approach: check if $k \mid n$ for every $1<k<n$.

- But at least 10^{m-1} numbers are $\leq n$, if n has m digits
- 1000 numbers less than 1000 (a 4-digit number)
- 1,000,000 less than 1,000,000 (a 7-digit number)

So the algorithm is exponential time!
We can do a little better

- Skip the even numbers
- That saves a factor of $2 \longrightarrow$ not good enough
- Try only primes (Sieve of Eratosthenes)
- Still doesn't help much

Primality testing

How can we tell if $n \in N$ is prime?
The naive approach: check if $k \mid n$ for every $1<k<n$.

- But at least 10^{m-1} numbers are $\leq n$, if n has m digits
- 1000 numbers less than 1000 (a 4-digit number)
- 1,000,000 less than 1,000,000 (a 7-digit number)

So the algorithm is exponential time!
We can do a little better

- Skip the even numbers
- That saves a factor of $2 \longrightarrow$ not good enough
- Try only primes (Sieve of Eratosthenes)
- Still doesn't help much

We can do much better:

- There is a polynomial time randomized algorithm
- We will discuss this when we talk about probability
- In 2002, Agarwal, Saxena, and Kayal gave a (nonprobabilistic) polynomial time algorithm
- Saxena and Kayal were undergrads in 2002 !

The Fundamental Theorem of Arithmetic

Theorem 3: Every natural number $n>1$ can be uniquely represented as a product of primes, written in nondecreasing size.

- Examples: $54=2 \cdot 3^{3}, 100=2^{2} \cdot 5^{2}, 15=3 \cdot 5$.

Proving that that n can be written as a product of primes is easy (by strong induction):

- Base case: 2 is the product of primes (just 2)
- Inductive step: If $n>2$ is prime, we are done. If not, $n=a b$.
- Must have $a<n, b<n$.
- By I.H., both a and b can be written as a product of primes
- So n is product of primes

Proving uniqueness is harder.

- We'll do that in a few days...

