Number Theory

Mathematics is the queen of sciences and number theory is the queen of mathematics.

- Carl Friedrich Gauss

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨー シタペ

But why is it computer science?

It turns out to be critical for cryptography!

Division

For $a, b \in Z$, $a \neq 0$, a divides b if there is some $c \in Z$ such that b = ac.

- ▶ Notation: *a* | *b*
- ▶ Examples: 3 | 9, 3 ∦ 7

If $a \mid b$, then a is a *factor* of b, b is a *multiple* of a.

Theorem 1: If $a, b, c \in Z$, then

- 1. if $a \mid b$ and $a \mid c$ then $a \mid (b + c)$.
- 2. If $a \mid b$ then $a \mid (bc)$
- 3. If $a \mid b$ and $b \mid c$ then $a \mid c$ (divisibility is transitive).

Proof: How do you prove this? Use the definition!

Division

For $a, b \in Z$, $a \neq 0$, a divides b if there is some $c \in Z$ such that b = ac.

- ▶ Notation: *a* | *b*
- ▶ Examples: 3 | 9, 3 ∦ 7

If $a \mid b$, then a is a *factor* of b, b is a *multiple* of a.

Theorem 1: If $a, b, c \in Z$, then

1. if
$$a \mid b$$
 and $a \mid c$ then $a \mid (b + c)$.

- 2. If $a \mid b$ then $a \mid (bc)$
- 3. If $a \mid b$ and $b \mid c$ then $a \mid c$ (divisibility is transitive).

Proof: How do you prove this? Use the definition!

• E.g., if $a \mid b$ and $a \mid c$, then, for some d_1 and d_2 ,

$$b = ad_1$$
 and $c = ad_2$.

- That means $b + c = a(d_1 + d_2)$
- ► So a | (b + c).

Other parts: homework.

Division

For $a, b \in Z$, $a \neq 0$, a divides b if there is some $c \in Z$ such that b = ac.

- ► Notation: *a* | *b*
- ▶ Examples: 3 | 9, 3 ∦ 7

If $a \mid b$, then a is a *factor* of b, b is a *multiple* of a.

Theorem 1: If $a, b, c \in Z$, then

1. if
$$a \mid b$$
 and $a \mid c$ then $a \mid (b + c)$.

- 2. If $a \mid b$ then $a \mid (bc)$
- 3. If $a \mid b$ and $b \mid c$ then $a \mid c$ (divisibility is transitive).

Proof: How do you prove this? Use the definition!

• E.g., if $a \mid b$ and $a \mid c$, then, for some d_1 and d_2 ,

 $b = ad_1$ and $c = ad_2$.

- That means $b + c = a(d_1 + d_2)$
- ► So a | (b + c).

Other parts: homework.

Corollary 1: If $a \mid b$ and $a \mid c$, then $a \mid (mb + nc)$ for all $m, p \in \mathbb{Z}$.

Theorem 2: For $a \in Z$ and $d \in N$, d > 0, there exist unique $q, r \in Z$ such that $a = q \cdot d + r$ and $0 \le r < d$.

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨー シタペ

r is the remainder when a is divided by d

Notation: $r \equiv a \pmod{d}$; $a \mod d = r$

Theorem 2: For $a \in Z$ and $d \in N$, d > 0, there exist unique $q, r \in Z$ such that $a = q \cdot d + r$ and $0 \le r < d$.

r is the remainder when a is divided by d

Notation: $r \equiv a \pmod{d}$; $a \mod d = r$

Examples:

- Dividing 101 by 11 gives a quotient of 9 and a remainder of 2, so 101 ≡ 2 (mod 11) and 101 mod 11 = 2.
- Dividing 18 by 6 gives a quotient of 3 and a remainder of 0, so 18 ≡ 0 (mod 6) and 18 mod 6 = 0.

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨー シタペ

Theorem 2: For $a \in Z$ and $d \in N$, d > 0, there exist unique

 $q, r \in Z$ such that $a = q \cdot d + r$ and $0 \le r < d$.

r is the remainder when a is divided by d

Notation: $r \equiv a \pmod{d}$; $a \mod d = r$

Examples:

- Dividing 101 by 11 gives a quotient of 9 and a remainder of 2, so 101 ≡ 2 (mod 11) and 101 mod 11 = 2.
- Dividing 18 by 6 gives a quotient of 3 and a remainder of 0, so 18 ≡ 0 (mod 6) and 18 mod 6 = 0.

Proof: The proof is constructive: We define q, r expicitly:

Let $q = \lfloor a/d \rfloor$ and define $r = a - q \cdot d$.

▶ So $a = q \cdot d + r$ with $q \in Z$ and $0 \le r < d$ (since $q \cdot d \le a$). But why are q and d unique?

Theorem 2: For $a \in Z$ and $d \in N$, d > 0, there exist unique

 $q, r \in Z$ such that $a = q \cdot d + r$ and $0 \le r < d$.

r is the remainder when a is divided by d

Notation: $r \equiv a \pmod{d}$; $a \mod d = r$

Examples:

- Dividing 101 by 11 gives a quotient of 9 and a remainder of 2, so 101 ≡ 2 (mod 11) and 101 mod 11 = 2.
- Dividing 18 by 6 gives a quotient of 3 and a remainder of 0, so 18 ≡ 0 (mod 6) and 18 mod 6 = 0.

Proof: The proof is constructive: We define q, r expicitly: Let $q = \lfloor a/d \rfloor$ and define $r = a - q \cdot d$.

• So $a = q \cdot d + r$ with $q \in Z$ and $0 \le r < d$ (since $q \cdot d \le a$). But why are q and d unique?

- Suppose $q \cdot d + r = q' \cdot d + r'$ with $q', r' \in Z$ and $0 \le r' < d$.
- Then (q' q)d = (r r') with -d < r r' < d.
- ► The lhs is divisible by d so r = r' and we're done.

Primes

- If $p \in N$, p > 1 is *prime* if its only positive factors are 1 and *p*.
- $n \in N$ is *composite* if n > 1 and n is not prime.
 - If *n* is composite then $a \mid n$ for some $a \in N$ with 1 < a < n
 - Can assume that $a \leq \sqrt{n}$.
 - ▶ **Proof:** By contradiction: Suppose n = bc, $b > \sqrt{n}$, $c > \sqrt{n}$. But then bc > n, a contradiction.

Primes: 2, 3, 5, 7, 11, 13, ... Composites: 4, 6, 8, 9, ...

Primality testing

How can we tell if $n \in N$ is prime?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

Primality testing

How can we tell if $n \in N$ is prime?

The naive approach: check if $k \mid n$ for every 1 < k < n.

- But at least 10^{m-1} numbers are $\leq n$, if *n* has *m* digits
 - ▶ 1000 numbers less than 1000 (a 4-digit number)
 - 1,000,000 less than 1,000,000 (a 7-digit number)

So the algorithm is *exponential time*!

We can do a little better

- Skip the even numbers
- That saves a factor of 2 \longrightarrow not good enough
- Try only primes (Sieve of Eratosthenes)
 - Still doesn't help much

Primality testing

How can we tell if $n \in N$ is prime?

The naive approach: check if $k \mid n$ for every 1 < k < n.

- But at least 10^{m-1} numbers are $\leq n$, if *n* has *m* digits
 - 1000 numbers less than 1000 (a 4-digit number)
 - 1,000,000 less than 1,000,000 (a 7-digit number)

So the algorithm is *exponential time*!

We can do a little better

- Skip the even numbers
- That saves a factor of 2 \longrightarrow not good enough
- Try only primes (Sieve of Eratosthenes)
 - Still doesn't help much

We can do much better:

- There is a polynomial time randomized algorithm
 - We will discuss this when we talk about probability
- In 2002, Agarwal, Saxena, and Kayal gave a (nonprobabilistic) polynomial time algorithm
 - ► Saxena and Kayal were undergrads in 2002!

The Fundamental Theorem of Arithmetic

Theorem 3: Every natural number n > 1 can be uniquely represented as a product of primes, written in nondecreasing size.

• Examples: $54 = 2 \cdot 3^3$, $100 = 2^2 \cdot 5^2$, $15 = 3 \cdot 5$.

Proving that that n can be written as a product of primes is easy (by strong induction):

- Base case: 2 is the product of primes (just 2)
- Inductive step: If n > 2 is prime, we are done. If not, n = ab.
 - Must have a < n, b < n.
 - ▶ By I.H., both *a* and *b* can be written as a product of primes

So n is product of primes

Proving uniqueness is harder.

We'll do that in a few days ...