
Induction

This is perhaps the most important technique we’ll learn for
proving things.

Idea: To prove that a statement is true for all natural numbers,
show that it is true for 1 (base case or basis step) and show that if
it is true for n, it is also true for n + 1 (inductive step).

I The base case does not have to be 1; it could be 0, 2, 3, . . .

I If the base case is k, then you are proving the statement for
all n ≥ k .

It is sometimes quite difficult to formulate the statement to prove.

IN THIS COURSE, WE WILL BE VERY FUSSY ABOUT THE
FORMULATION OF THE STATEMENT TO PROVE. YOU
MUST STATE IT VERY CLEARLY. WE WILL ALSO BE PICKY
ABOUT THE FORM OF THE INDUCTIVE PROOF.
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Writing Up a Proof by Induction

1. State the hypothesis very clearly:
I Let P(n) be the (English) statement . . . [some statement

involving n]

2. The basis step
I P(k) holds because . . . [where k is the base case, usually 0 or

1]

3. Inductive step
I Assume P(n). We prove P(n + 1) holds as follows . . . Thus,

P(n)⇒ P(n + 1).

4. Conclusion
I Thus, we have shown by induction that P(n) holds for all

n ≥ k (where k was what you used for your basis step). [It’s
not necessary to always write the conclusion explicitly.]
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A Simple Example
Theorem: For all positive integers n,

∑n
k=1 k = n(n+1)

2 .

Proof: By induction. Let P(n) be the statement

n∑
k=1

k =
n(n + 1)

2
.

Basis: P(1) asserts that
∑1

k=1 k = 1(1+1)
2 . Since the LHS and

RHS are both 1, this is true.

Inductive step: Assume P(n). We prove P(n + 1).

Note that P(n + 1) is the statement
∑n+1

k=1 k = (n+1)(n+2)
2 .∑n+1

k=1 k =
∑n

k=1 k + (n + 1)

= n(n+1)
2 + (n + 1) [Induction hypothesis]

= n(n+1)+2(n+1)
2

= (n+1)(n+2)
2

Thus, P(n) implies P(n + 1), so the result is true by induction.
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Notes:

I You can write
P(n)
= instead of writing “Induction hypothesis”

at the end of the line, or you can write “P(n)” at the of the
line.

I Whatever you write, make sure it’s clear when you’re applying
the induction hypothesis

I Notice how we rewrite
∑n+1

k=1 k so as to be able to appeal to
the induction hypothesis. This is standard operating
procedure.



Another example

Theorem: (1 + x)n ≥ 1 + nx for all nonnegative integers n and all
x ≥ −1. (Take 00 = 1.)

Proof: By induction on n. Let P(n) be the statement
(1 + x)n ≥ 1 + nx for all x ≥ −1.

Basis: P(0) says (1 + x)0 ≥ 1. This is clearly true for all x ≥ −1.

Inductive Step: Assume P(n). We prove P(n + 1).

(1 + x)n+1 = (1 + x)n(1 + x)
≥ (1 + nx)(1 + x) [Induction hypothesis]
= 1 + nx + x + nx2

= 1 + (n + 1)x + nx2

≥ 1 + (n + 1)x

I Why does this argument fail if x < −1?
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Why does induction work?

The text has the usual domino picture. Let’s look at it a little
more carefully.

Suppose you’ve proved that P(n) holds for all n by induction.

I So you’ve proved P(1) and, for all n, P(n) implies P(n + 1)

If P(n) doesn’t hold for all n, there is a least natural number n∗ for
which it doesn’t hold.

I n∗ can’t be 1, because P(1) holds by assumption.

Thus, P(n∗ − 1) holds.

I But we know that, for all n, if P(n) holds, then P(n + 1) holds

Since P(n∗ − 1) holds, so does P((n∗ − 1) + 1).

But that means P(n∗) holds, a contradiction!

What really mattered: If P(n) doesn’t hold for all natural numbers
n, there is a least natural number n∗ for which it doesn’t hold.
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When can we apply induction?
Can we prove that P(n) holds for all even n?

I This is easy:
I Base case: Prove P(0)
I Inductive step: show that if P(n) holds, then so does P(n + 2)

How about P(n) for all integers?
I Yes, with the right induction statement.

I Base case: Prove P(0)
I Induction step: Prove (for all n) that if P(n) holds, then so do

P(n + 1) and P(n − 1).

How about P(a/b) for all rational numbers a and b?
I Can do this too:

I Base case: Prove that P(0/1) holds
I Induction step: show, for all n and m, that if P(n/m) holds,

then so do P(n + 1/m) and P(n/m + 1).

I This will get the positive rationals; a little more work gets all
the rationals.

How about P(r) for all real numbers r?
I This is a lost cause
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Towers of Hanoi

Problem: Move all the rings from pole 1 and pole 2, moving one
ring at a time, and never having a larger ring on top of a smaller
one.

How do we solve this?

I Think recursively!

I Suppose you could solve it for n − 1 rings? How could you do
it for n?

Solution
I Move top n− 1 rings from pole 1 to pole 3 (we can do this by

assumption)
I Pretend largest ring isn’t there at all

I Move largest ring from pole 1 to pole 2
I Move top n− 1 rings from pole 3 to pole 2 (we can do this by

assumption)
I Again, pretend largest ring isn’t there
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This solution translates to a recursive algorithm:

I Suppose move(r → s) imoves the top ring on pole r to pole s

I Note that if r , s ∈ {1, 2, 3}, then 6− r − s is the other
number in the set

procedure H(n, r , s) [Move n disks from r to s, r 6= s]
if n = 1 then move(r → s)

else H(n − 1, r , 6− r − s)
move(r → s)
H(n − 1, 6− r − s, s)

endif
endproc

We can prove (by induction) that this algorithm does the right
thing.

I What’s the runing time of the algorithm?

I How long does it take to move n rings from pole 1 to pole 2
according to this algorithm.



Towers of Hanoi: Analysis

Theorem: It takes 2n − 1 moves to perform H(n, r , s), for all
positive n, and all r , s ∈ {1, 2, 3}, r 6= s.

Proof: Let P(n) be the statement “It takes 2n − 1 moves to
perform H(n, r , s) and all r , s ∈ {1, 2, 3}.”

I Note that “for all positive n” is not part of P(n)!

I P(n) is a statement about a particular n.

I If it were part of P(n), what would P(1) be?

Basis: P(1) is immediate: move(r → s) is the only move in
H(1, r , s), and 21 − 1 = 1.

Inductive step: Assume P(n). To perform H(n + 1, r , s), we first
do H(n, r , 6− r − s), then move(r → s), then H(n, 6− r − s, s).
Altogether, this takes 2n − 1 + 1 + 2n − 1 = 2n+1 − 1 steps.



A Matching Lower Bound

Theorem: Any algorithm to move n rings from pole r to pole s
requires at least 2n − 1 steps.

Proof: By induction, taking the statement of the theorem to be
P(n).

Basis: Easy: Clearly it requires (at least) 1 step to move 1 ring
from pole r to pole s.

Inductive step: Assume P(n). Suppose you have a sequence of
steps to move n + 1 rings from r to s. There’s a first time and a
last time you move ring n + 1:

I Let k be the first time

I Let k ′ be the last time.

I Possibly k = k ′ (if you only move ring n + 1 once)

Suppose at step k , you move ring n + 1 from pole r to pole s ′.

I You can’t assume that s ′ = s, although this is optimal.



Key point:

I The top n rings have to be on the third pole, 6− r − s ′

I Otherwise, you couldn’t move ring n + 1 from r to s ′.

By P(n), it took at least 2n − 1 moves to get the top n rings to
pole 6− r − s ′.

At step k ′, the last time you moved ring n + 1, suppose you moved
it from pole r ′ to s (it has to end up at s).

I the other n rings must be on pole 6− r ′ − s.

I By P(n), it takes at least 2n − 1 moves to get them to ring s
(where they have to end up).

So, altogether, there are at least 2(2n − 1) + 1 = 2n+1 − 1 moves
in your sequence:

I at least 2n − 1 moves before step k

I at least 2n − 1 moves after step k ′

I step k itself.

Of course, if k 6= k ′ (that is, if you move ring n + 1 more than
once) there are even more moves in your sequence.



Strong Induction
Sometimes when you’re proving P(n + 1), you want to be able to
use P(j) for j ≤ n, not just P(n). You can do this with strong
induction.

1. Let P(n) be the statement . . . [some statement involving n]
2. The basis step

I P(k) holds because . . . [where k is the base case, usually 0 or
1]

3. Inductive step
I Assume P(k), . . . ,P(n) holds. We show

P(n + 1) holds as follows . . .

Although strong induction looks stronger than induction, it’s not.
Anything you can do with strong induction, you can do with regular
induction, by appropriately modifying the induction hypothesis.

I If P(n) is the statement you’re trying to prove by strong
induction, let P ′(n) be the statement P(1), . . . ,P(n) hold.
Proving P ′(n) by regular induction is the same as proving
P(n) by strong induction.
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An example using strong induction

Theorem: Any item costing n > 7 kopecks can be bought using
only 3-kopeck and 5-kopeck coins.

Proof: Using strong induction. Let P(n) be the statement that n
kopecks can be paid using 3-kopeck and 5-kopeck coins. We prove
P(n) for all n ≥ 8.

Basis: P(8) is clearly true since 8 = 3 + 5.

Inductive step: Assume P(8), . . . ,P(n) is true. We want to show
P(n + 1). If n + 1 is 9 or 10, then it’s easy to see that there’s no
problem (P(9) is true since 9 = 3 + 3 + 3, and P(10) is true since
10 = 5 + 5). Otherwise, note that (n + 1)− 3 = n − 2 ≥ 8. Thus,
P(n − 2) is true, using the induction hypothesis. This means we
can use 3- and 5-kopeck coins to pay for something costing n − 2
kopecks. One more 3-kopeck coin pays for something costing n + 1
kopecks.



Bubble Sort
Suppose we wanted to sort n items. Here’s one way to do it:

Input n [number of items to be sorted]
w1, . . . ,wn [items]

Algorithm BubbleSort
for i = 1 to n − 1

for j = 1 to n − i
if wj > wj+1 then switch(wj ,wj+1) endif

endfor
endfor

Why is this right:

I Intuitively, because largest elements “bubble up” to the top

How many comparisons?
I Best case, worst case, average case all the same:

I (n − 1) + (n − 2) + · · ·+ 1 = n(n − 1)/2



Proving Bubble Sort Correct
We want to show that the algorithm is correct by induction.
What’s the statement of the induction?

Could take P(n) to be the statement: the algorithm works
correctly for n inputs.

I That turns out to be a tough induction statement to work
with.

I Suppose P(1) is true. How do you prove P(2)?

A better choice:
I P(k) is the statement that, if there are n inputs and

k ≤ n − 1, then after k iterations of the outer loop,
wn−k+1, . . . ,wn are the k largest items, sorted in the right
order.

I Note that P(k) is vacuously true if k ≥ n.

Basis: How do we prove P(1)? By a nested induction!

This time, take Q(l) to be the statement that, if l ≤ n − 1, then
after l iterations of the inner loop, wl+1 > wj , for j = 1, . . . , l .

Basis: Q(1) holds because after the first iteration of the inner
loop, w2 > w1 (thanks to the switch statement).

Inductive step: Suppose that Q(l) is true. If l + 1 ≥ n − 1, then
Q(l + 1) is vacuously true. If l + 1 < n, by Q(l), we know that
wl+1 > wj , for j = 1, . . . , l after l iterations. The (l + 1)st
iteration of the inner loop compares wl+1 and wl+2. After the
(l + 1)st iteration, the bigger one is wl+2. Thus, wl+2 > wl+1. By
the induction hypothesis, wl+2 > wj , for j + 1, . . . , l .

That completes the nested induction. Thus, Q(l) holds for all l .
Q(n − 1) says that wn > wj for j = 1, . . . , n − 1. That’s just what
P(1) says. So we’re done with the base case of the main induction.

[Note: For a really careful proof, we need better notation (for
value of wl before and after the switch).]

Inductive step (for main induction): Assume P(k). Thus,
wk+1, . . . ,wn are the k largest items. To prove P(k + 1), we use
nested induction again:

I Now Q(l) says “if i = k + 1, then if l ≤ n − (k + 1), after l
iterations of the inner loop, wl+1 > wj , for j = 1, . . . , l .”

I Almost the same as before, except that instead of saying “if
l ≤ n − 1”, we say “if l ≤ n − (k + 1).”

I If i = k + 1, we go through the inner loop only n − (k + 1)
times.

Q(n − k − 1) says that, after the (k + 1)st iteration of the inner
loop, wn−k > wj for j = 1, . . . , k . P(k) says that the top k
elements are wn−k+1, . . . ,wn, in that order. Thus, the top k + 1
elements must be wn−k , . . .wn, in that order. This proves
P(k + 1).

Note that P(n − 1) says that after n − 1 iterations of the outer
loop (which is all there are), the top n − 1 elements are
w2, . . . ,wn. So w1 has to be the smallest element, and
w1,w2, . . . ,wn is a sorted list.
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Q(n − 1) says that wn > wj for j = 1, . . . , n − 1. That’s just what
P(1) says. So we’re done with the base case of the main induction.

[Note: For a really careful proof, we need better notation (for
value of wl before and after the switch).]

Inductive step (for main induction): Assume P(k). Thus,
wk+1, . . . ,wn are the k largest items. To prove P(k + 1), we use
nested induction again:

I Now Q(l) says “if i = k + 1, then if l ≤ n − (k + 1), after l
iterations of the inner loop, wl+1 > wj , for j = 1, . . . , l .”

I Almost the same as before, except that instead of saying “if
l ≤ n − 1”, we say “if l ≤ n − (k + 1).”

I If i = k + 1, we go through the inner loop only n − (k + 1)
times.

Q(n − k − 1) says that, after the (k + 1)st iteration of the inner
loop, wn−k > wj for j = 1, . . . , k . P(k) says that the top k
elements are wn−k+1, . . . ,wn, in that order. Thus, the top k + 1
elements must be wn−k , . . .wn, in that order. This proves
P(k + 1).

Note that P(n − 1) says that after n − 1 iterations of the outer
loop (which is all there are), the top n − 1 elements are
w2, . . . ,wn. So w1 has to be the smallest element, and
w1,w2, . . . ,wn is a sorted list.



How to Guess What to Prove

Sometimes formulating P(n) is straightforward; sometimes it’s not.
This is what to do:

I Compute the result in some specific cases

I Conjecture a generalization based on these cases

I Prove the correctness of your conjecture (by induction)



Example

Suppose a1 = 1 and an = adn/2e + abn/2c for n > 1. Find an
explicit formula for an.

Try to see the pattern:

I a1 = 1

I a2 = a1 + a1 = 1 + 1 = 2

I a3 = a2 + a1 = 2 + 1 = 3

I a4 = a2 + a2 = 2 + 2 = 4

Suppose we modify the example. Now a1 = 3 and
an = adn/2e + abn/2c for n > 1. What’s the pattern?

I a1 = 3

I a2 = a1 + a1 = 3 + 3 = 6

I a3 = a2 + a1 = 6 + 3 = 9

I a4 = a2 + a2 = 6 + 6 = 12

an = 3n!



Theorem: If a1 = k and an = adn/2e + abn/2c for n > 1, then
an = kn for n ≥ 1.

Proof: By strong induction. Let P(n) be the statement that
an = kn.

Basis: P(1) says that a1 = k , which is true by hypothesis.

Inductive step: Assume P(1), . . . ,P(n); prove P(n + 1).

an+1 = ad(n+1)/2e + ab(n+1)/2c
= kd(n + 1)/2e+ kb(n + 1)/2c [Induction hypothesis]
= k(d(n + 1)/2e+ b(n + 1)/2c)
= k(n + 1)

We used the fact that dn/2e+ bn/2c = n for all n (in particular,
for n + 1). To see this, consider two cases: n is odd and n is even.

I if n is even, dn/2e+ bn/2c = n/2 + n/2 = n
I if n is odd, suppose n = 2k + 1

I dn/2e+ bn/2c = (k + 1) + k = 2k + 1 = n

This proof has a (small) gap:
I We should check that d(n + 1)/2e ≤ n
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One more example
Find a formula for

1

1 · 4
+

1

4 · 7
+

1

7 · 10
+ · · ·+ 1

(3n − 2)(3n + 1)

Some values:
I r1 = 1/4
I r2 = 1/4 + 1/28 = 8/28 = 2/7
I r3 = 1/4 + 1/28 + 1/70 = (70 + 10 + 4)/280 = 84/280 = 3/10

Can you see the pattern?

Conjecture: rn = n/(3n + 1). Let this be P(n).

Basis: P(1) says that r1 = 1/4.

Inductive step:
rn+1 = rn + 1

(3n+1)(3n+4)

= n
3n+1 + 1

(3n+1)(3n+4)

= n(3n+4)+1
(3n+1)(3n+4)

= 3n2+4n+1
(3n+1)(3n+4)

= (n+1)(3n+1)
(3n+1)(3n+4) = n+1

3n+4
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Faulty Inductions
Part of why we want you to write out your assumptions carefully is
so that you don’t get led into some standard errors.

Theorem: All women are blondes.

Proof by induction: Let P(n) be the statement: For any set of n
women, if at least one of them is a blonde, then all of them are.

Basis: Clearly OK.

Inductive step: Assume P(n). Let’s prove P(n + 1).

Given a set W of n + 1 women, one of which is blonde. Let A and
B be two subsets of W of size n, each of which contains the
known blonde, whose union is W .

By the induction hypothesis, each of A and B consists of all
blondes. Thus, so does W . This proves P(n)⇒ P(n + 1).

Take W to be the set of women in the world, and let n = |W |.
Since there is clearly at least one blonde in the world, it follows
that all women are blonde!

Where’s the bug?
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Theorem: Every integer > 1 has a unique prime factorization.

[The result is true, but the following proof is not:]

Proof: By strong induction. Let P(n) be the statement that n has
a unique factorization. We prove P(n) for n > 1.

Basis: P(2) is clearly true.

Induction step: Assume P(2), . . . ,P(n). We prove
P(n + 1). If n + 1 is prime, we are done. If not, it factors
somehow. Suppose n + 1 = rs r , s > 1. By the induction
hypothesis, r has a unique factorization Πipi and s has a unique
prime factorization Πjqj . Thus, ΠipiΠjqj is a prime factorization of
n + 1, and since none of the factors of either piece can be changed,
it must be unique.

What’s the flaw??



Problem: Suppose n + 1 = 36. That is, you’ve proved that every
number up to 36 has a unique factorization. Now you need to
prove it for 36.

36 isn’t prime, but 36 = 3× 12. By the induction hypothesis, 12
has a unique prime factorization, say p1p2p3. Thus, 36 = 3p1p2p3.

However, 36 is also 4× 9. By the induction hypothesis, 4 = q1q2
and 9 = r1r2. Thus, 36 = q1q2r1r2.

How do you know that 3p1p2p3 = q1q2r1r2.
(They do, but it doesn’t follow from the induction hypothesis.)

This is a breakdown error. If you’re trying to show something is
unique, and you break it down (as we broke down n + 1 into r and
s) you have to argue that nothing changes if we break it down a
different way. What if n + 1 = tu?

I The actual proof of this result is quite subtle



Theorem: The sum of the internal angles of a regular n-gon is
180(n − 2) for n ≥ 3.

Proof: By induction. Let P(n) be “the sum of the internal angles
of a regular n-gon is 180(n − 2).” For n = 3, the result was shown
in high school. Assume P(n); let’s prove P(n + 1). Given a regular
(n + 1)-gon, we can lop off one of the corners.

By the induction hypothesis, the sum of the internal angles of the
regular n-gon is 180(n − 2) degrees; the sum of the internal angles
of the triangle is 180 degrees. Thus, the internal angles of the
original (n + 1)-gon is 180(n − 1).
What’s wrong??

I When you lop off a corner, you don’t get a regular n-gon.

The fix: Strengthen the induction hypothesis.

I Let P(n) say that the sum of the internal angles of any n-gon
is 180(n − 2).
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Consider 0-1 sequences in which 1’s may not appear consecutively,
except in the rightmost two positions.

I 010110 is not allowed, but 010011 is

Prove that there are 2n allowed sequences of length n for n ≥ 1

Why can’t this be right?

“Proof” Let P(n) be the statement of the theorem.

Basis: There are 2 sequences of length 1—0 and 1—and they’re
both allowed.

Inductive step: Assume P(n). Let’s prove P(n + 1). Take any
allowed sequence x of length n. We get a sequence of length n + 1
by appending either a 0 or 1 at the end. In either case, it’s
allowed.

I If x ends with a 1, it’s OK, because x1 is allowed to end with
2 1’s.

Thus, sn+1 = 2sn = 22n = 2n+1.

Where’s the flaw?

I What if x already ends with 2 1’s?
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Inductive Definitions

Example: Define
∑n

k=1 ak inductively (i.e., by induction on n):

I
∑1

k=1 ak = a1
I
∑n+1

k=1 ak =
∑n

k=1 ak + an+1

The inductive definition avoids the use of · · · , and thus is less
ambiguous.

Example: An inductive definition of n!:

I 1! = 1

I (n + 1)! = (n + 1)n!

Could even start with 0! = 1.



Inductive Definitions of Sets
A palindrome is an expression that reads the same backwards and
forwards:

I Madam I’m Adam

I Able was I ere I saw Elba

What is the set of palindromes over {a, b, c , d}? Two approaches:

1. The smallest set P such that

(a) P contains a, b, c , d , aa, bb, cc , dd
(b) if x is in P, then so is axa, bxb, cxc , and dxd

Things to think about:
I How do you know that there is a smallest set (one which is a

subset of all others)
I How do you know that it doesn’t contain ab

2. Define Pn, the palindromes of length n, inductively:
I P1 = {a, b, c , d}
I P2 = {aa, bb, cc , dd}
I Pn+1 = {axa, bxb, cxc , dxd |x ∈ Pn−1} for n ≥ 2

Let P ′ = ∪nPn.



Theorem: P = P ′. (The two approaches define the same set.)
Proof: Show P ⊆ P ′ and P ′ ⊆ P.
To see that P ⊆ P ′, it suffices to show that

(a) P ′ contains a, b, c , d , aa, bb, cc , dd

(b) if x is in P ′, then so is axa, bxb, cxc , and dxd

(since P is the smallest set with these properties).

Clearly P1 ∪ P2 satisfies (1), so P ′ does. And if x ∈ P ′, then
x ∈ Pn for some n, in which case axa, bxb, cxc , and dxd are all in
Pn+2 and hence in P ′. Thus, P ⊆ P ′.

To see that P ′ ⊆ P, we prove by strong induction that Pn ⊆ P for
all n. Let P(n) be the statement “Pn ⊆ P.”

Basis: P1,P2 ⊆ P: Obvious.

Suppose P1, . . . ,Pn ⊆ P. If n ≥ 2, the fact that Pn+1 ⊆ P follows
immediately from (b). (Actually, all we need is the fact that
Pn−1 ⊆ P, which follows from the (strong) induction hypothesis.)

Thus, P ′ = ∪nPn ⊆ P.



Recall that the set of palindromes is the smallest set P such that

(a) P contains a, b, c , d , aa, bb, cc , dd

(b) if x is in P, then so is axa, bxb, cxc , and dxd

“Smallest” is not in terms of cardinality.

I P is guaranteed to be infinite

“Smallest” is in terms of the subset relation.

Here’s a set that satisfies (a) and (b) and isn’t the smallest:

Define Qn inductively:

I Q1 = {a, b, c , d}
I Q2 = {aa, bb, cc , dd , ab}
I Qn+1 = {axa, bxb, cxc , dxd |x ∈ Qn−1}, n ≥ 2

Let Q = ∪nQn.

It’s easy to see that Q satisfies (a) and (b), but it isn’t the
smallest set to do so.



Fibonacci Numbers

[Leonardi of Pisa, 12th century:] Suppose you start with two
rabbits, one of each gender. After two months, they produce two
rabbits (one of each gender) as offspring. Each subsequent pair of
offspring behaves the same way, producing another pair in two
months. Rabbits never die. How many rabbits do you have after n
months?

Let fn be the number of pairs after n months.
By assumption, f1 = f2 = 1
For n > 2, fn+1 = fn + fn−1

I In month n + 1, each pair of rabbits that have been around for
at least two months (fn−1) produces another pair. So you
have fn−1 new pairs on top of the fn you had after n months.

I This is an inductive definition of a sequence

The Fibonacci sequence has the form 1, 1, 2, 3, 5, 8, . . .



Fibonacci numbers grow exponentially
The Fibonacci sequence has lots of nice properties; we’ll prove one.
Let r = (1 +

√
5)/2 ≈ 1.62.

Claim: fn ≥ rn−2 for all n.

Where did this weird r come from?
I It’s a solution to the equation r2 = r + 1.

I The other solution is (1−
√

5)/2

We can prove the claim by induction.
Base case: f1 = 1; r−1 = 1/r < 1; so f1 > r−1

f2 = 1; r0 = 1; so f2 ≥ r0.
Inductive step: If n ≥ 2

fn+1 = fn + fn−1
≥ rn−2 + rn−3

= rn−3(r + 1)
= rn−3r2 [since r + 1 = r2]
= rn−1

That’s it!

It can be shown that

fn =
1√
5

[(
1 +
√

5

2

)n

−

(
1−
√

5

2

)n]



The Sorites Paradox

If a pile of sand has 1, 000, 000 grains of sand, it’s a heap.
Removing one grain of sand from a heap leaves 1 heap.
Therefore, by induction, if a pile of sand has only one grain, it’s
also a heap.

Prove by induction on n that if a pile of sand has 1, 000, 000− n
grains of sand, it’s a heap.

Where’s the bug?

I This leads to a whole topic in the philosophy of language
called “vagueness”



The Trust Game
Consider a game where, after n steps, there are piles of money on
the table:

I The big one has $2n+1; the small one has $2n−1

There are two players, Alice and Bob. Initially Alice is in charge.
She can either quit the game or continue

I If she quits, she gets the money in the bigger pile ($4) and
Bob gets the money in the smaller pile ($1)

I If she continues, Bob is in charge

I If he quits, he gets the money in the bigger pile ($8), Alice
gets the money in the smaller pile ($2).

I If he continues, Alice is in charge, and so on.
I The game goes on for 20 steps;

I if they’re still playing then, Bob gets $221 (> $2,000,000);
Alice gets $219 (≈ $500,000)

What should you do?

I Should you trust the other player to keep playing, or take your
money and run?



In the game theory literature, this is called the centipede game.

r r r r r r r r
r r r r r r r

?

-

? ? ? ? ? ? ??

- - - - . . . -A B A B A B A B

(4,1) (2,8) (16,4) (8,32) (64,16) (25,27) (220,218) (219,221)

What should Alice do if they’re still playing at step 19?
I If she quits, she gets $220 (about $1,000,000); if she continues

she gets only $219).
I So Alice will quit, which means Bob will get $218

So what should Bob do if they’re still playing at step 18?
I If he quits, he gets $219; if he continues, most likely he’ll get

$218, since Alice will quit at step 19.
I So Bob quts, which means Alice will get $216.

Continuing this way (by backwards induction), Alice quits at step 1
and gets $4!

Under a specific model of rationality, quitting at the first step is
the only right thing to do.

I It’s the only Nash equilibrium

In practice (with smaller amounts of money), people play for a
little while before quitting.



The muddy children puzzle



We can prove by induction on k that if k children have muddy
foreheads, they say “yes” on the kth question.
It appears as if the father didn’t tell the children anything they
didn’t already know. Yet without the father’s statement, they
could not have deduced anything.
So what was the role of the father’s statement?


