CS 2800: Discrete Structures

Spring 2016

Mike George Joe Halpern

Slides largely taken from Sid Chaudhuri, with thanks.

Continuous Structures

miriadna.com

A Discreet Structure

indieflix.com

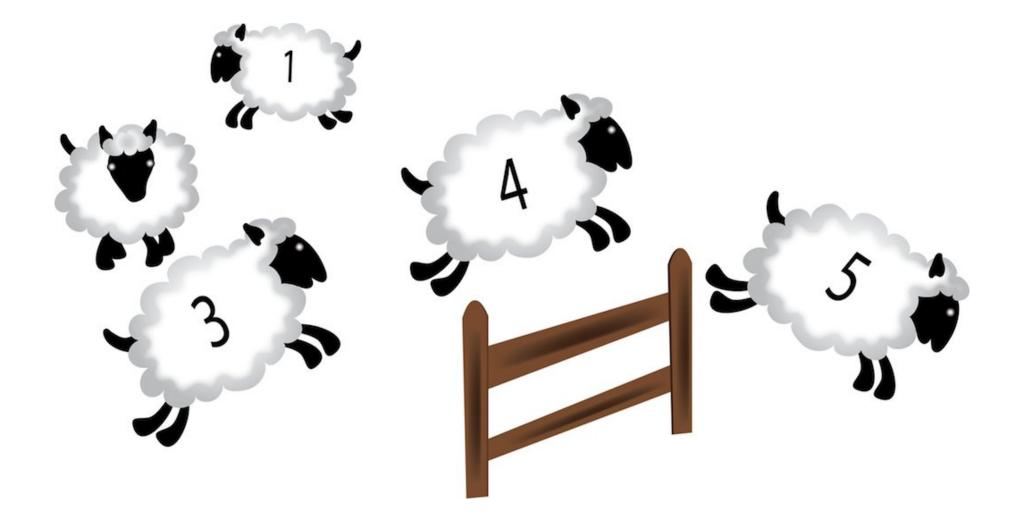
A Discreet Structure

indieflix.com

- discrete: individually separate and distinct
- discreet
 - careful and circumspect in one's speech or actions, especially in order to avoid causing offense or to gain an advantage.
 - intentionally unobtrusive.

Things we can count with the integers

Things we can count with the integers

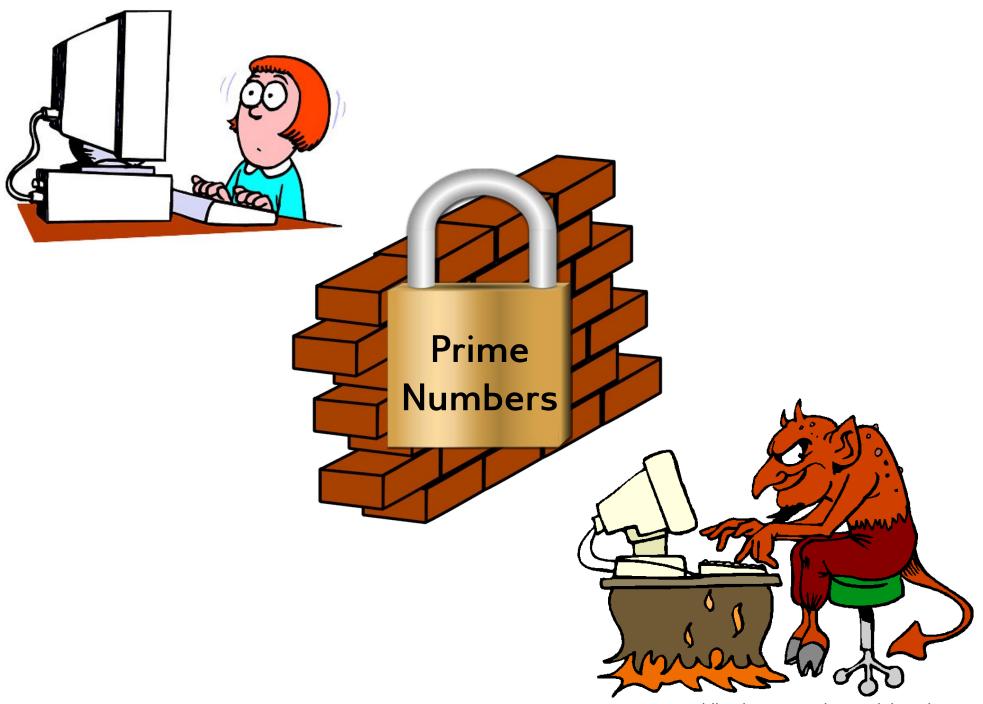


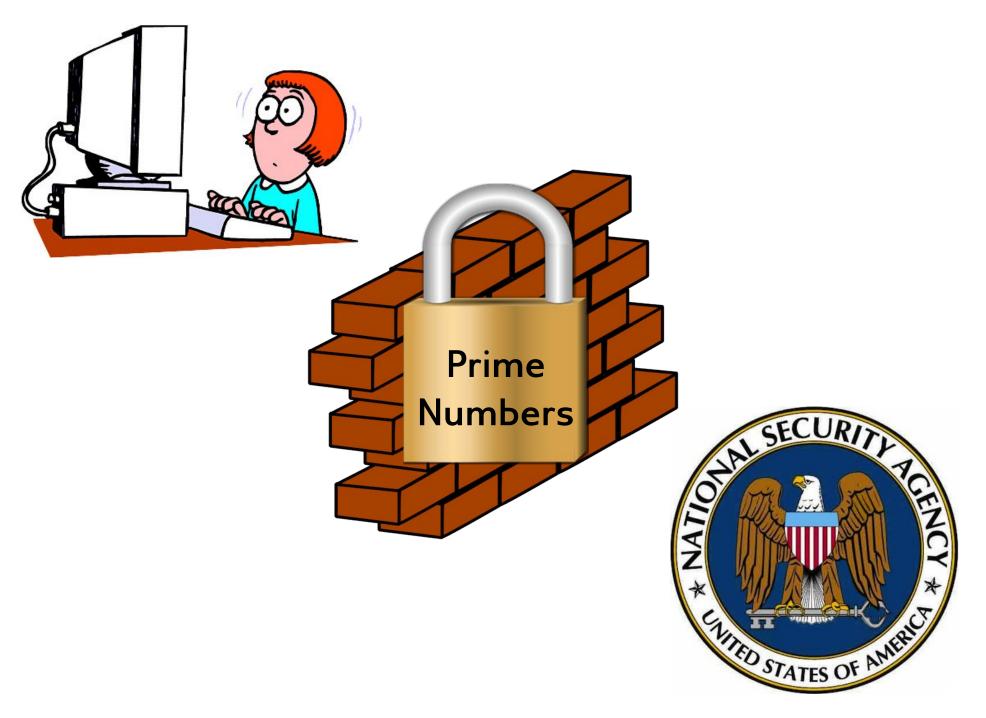
clipartpanda.com

Prime Numbers

A number with exactly two divisors: 1 and itself

2, 3, 5, 7, 11, 13, 17...





pleasureinlearning.com

1,000?

1,000? 1,000,000?

1,000? 1,000,000? An infinite number?

1,000? 1,000,000? **An infinite number**

(~300BC)

• Suppose there is a finite number of primes

- Suppose there is a finite number of primes
- Then there is a largest prime, p

- Suppose there is a finite number of primes
- Then there is a largest prime, \boldsymbol{p}
- Consider $n = (1 \times 2 \times 3 \times ... \times p) + 1$

- Suppose there is a finite number of primes
- Then there is a largest prime, \boldsymbol{p}
- Consider $n = (1 \times 2 \times 3 \times ... \times p) + 1$
- *n* cannot be prime (*p* is the largest)

- Suppose there is a finite number of primes
- Then there is a largest prime, \boldsymbol{p}
- Consider $n = (1 \times 2 \times 3 \times ... \times p) + 1$
- *n* cannot be prime (*p* is the largest)
- Therefore it has a (prime) divisor < n

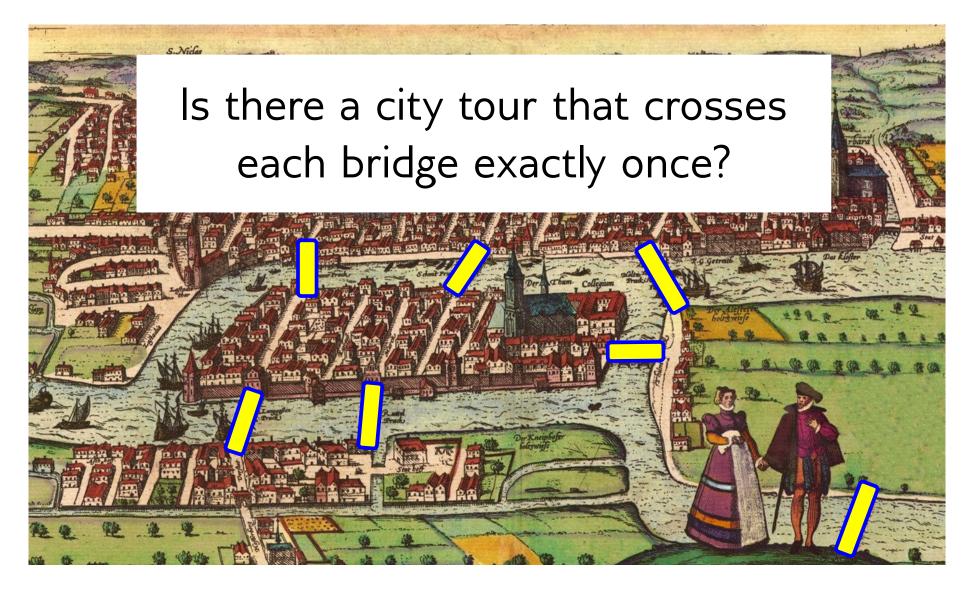
- Suppose there is a finite number of primes
- Then there is a largest prime, \boldsymbol{p}
- Consider $n = (1 \times 2 \times 3 \times ... \times p) + 1$
- *n* cannot be prime (*p* is the largest)
- Therefore it has a (prime) divisor < n
- But no number from 2 to p divides n

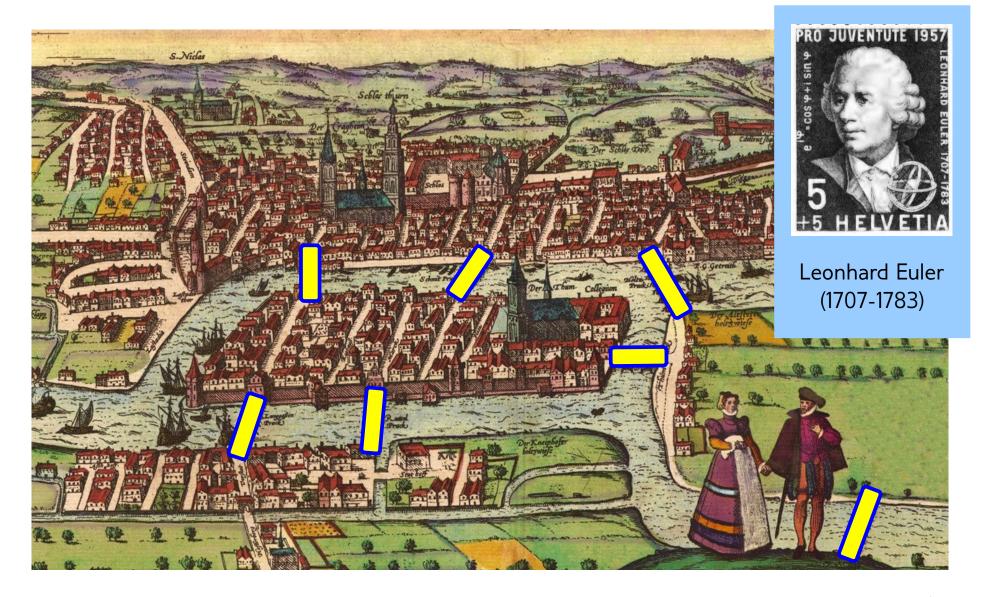
- Suppose there is a finite number of primes
- Then there is a largest prime, \boldsymbol{p}
- Consider $n = (1 \times 2 \times 3 \times ... \times p) + 1$
- *n* cannot be prime (*p* is the largest)
- Therefore it has a (prime) divisor < n
- But no number from 2 to *p* divides *n*
- So *n* has a prime divisor greater than *p*

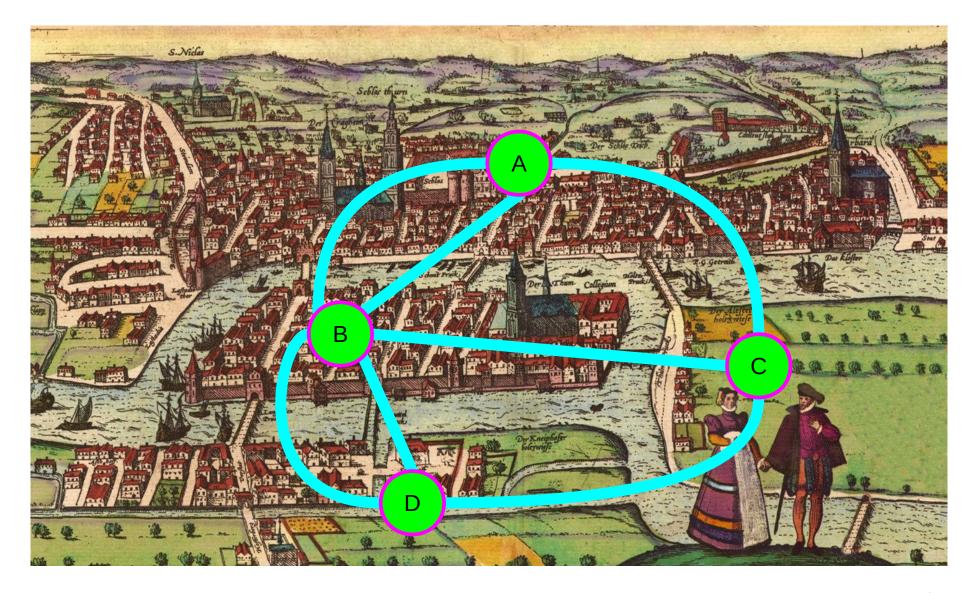
- Suppose there is a finite number of primes
- Then there is a largest prime, p
- Consider $n = (1 \times 2 \times 3 \times ... \times p) + 1$
- *n* cannot be prime (*p* is the largest)
- Therefore it has a (prime) divisor < n
- But no number from 2 to *p* divides *n*
- So *n* has a prime divisor greater than *p* Contradiction!!!

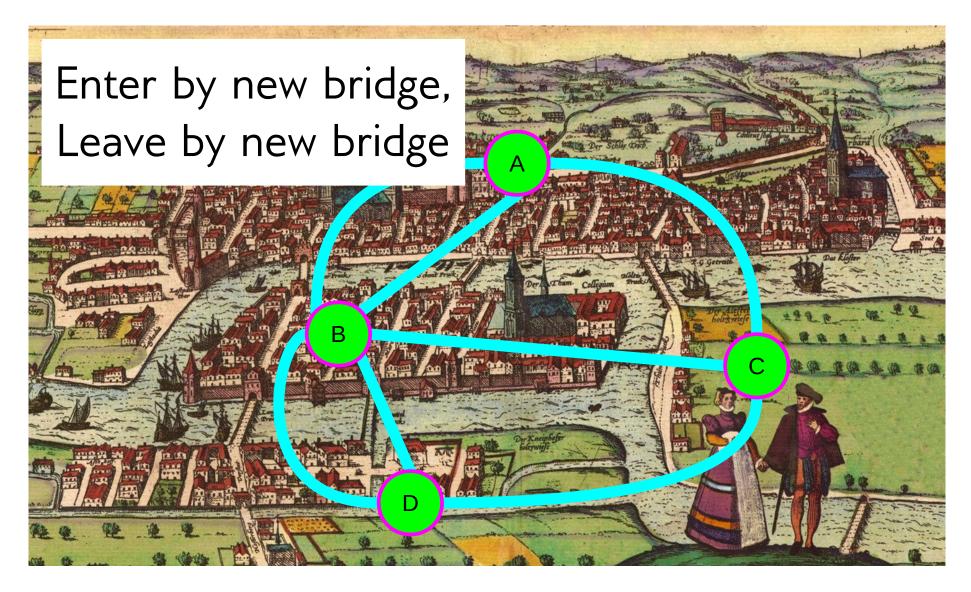
Discrete Structures

- Number theory
- Proof systems
- Sets, functions, relations
- Counting and probability

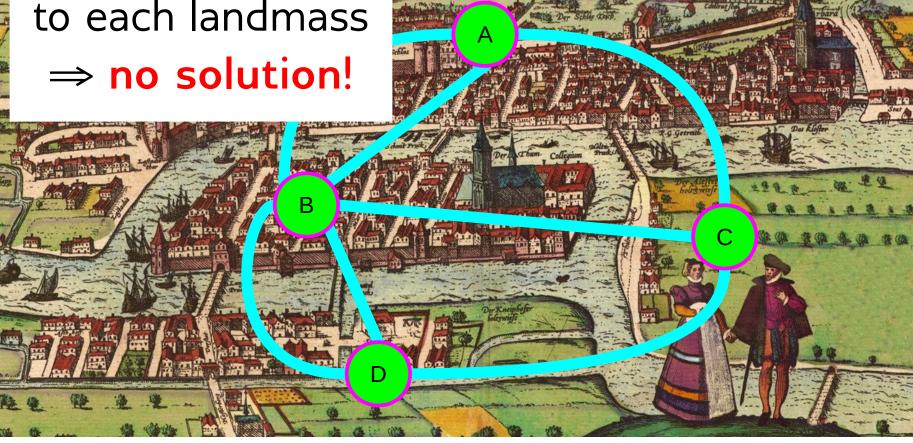






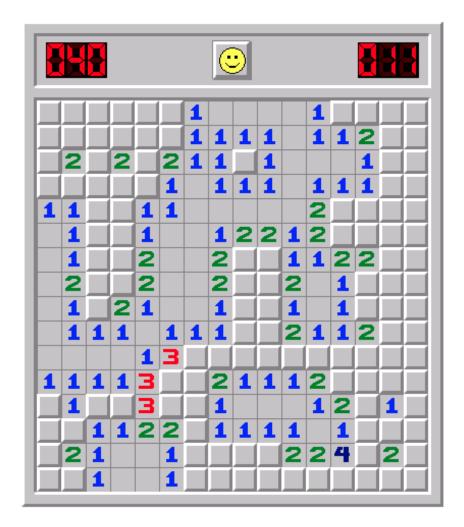


Odd # of bridges to each landmass \Rightarrow no solution!



- Cross each bridge once: Euler Path
 - Easy for a computer to calculate
- Visit each landmass once: Hamiltonian Path
 - Probably very hard for a computer to calculate
 - If you can find an efficient solution, you will get \$1M and undying fame (answers "P = NP?")
 - (Will also break modern crypto, collapse the banking system, revolutionize automated mathematics and science, bring about world peace...)

You'll also be terrific at Minesweeper



Discrete Structures

- Number theory
- Proof systems
- Sets, functions, relations
- Counting and probability
- Graph theory
- Models of computation, automata, complexity

This sentence is false.

This sentence is false. If true, it is false If false, it is true

This sentence is false. If true, it is false If false, it is true

Discrete Structures

- Number theory
- Proof systems
- Sets, functions, relations
- Counting and probability
- Graph theory
- Models of computation, automata, complexity
- Logic
- Decidability, computability

One running theme of the course:

- How to prove things
- How to write good proofs

That's what we'll be staring with.