
Logic: The Big Picture

A typical logic is described in terms of

I syntax: what are the legitimate formulas

I semantics: under what circumstances is a formula true

I proof theory/ axiomatization: rules for proving a formula true

Truth and provability are quite different.

I What is provable depends on the axioms and inference rules
you use

I Provability is a mechanical, turn-the-crank process

I What is true depends on the semantics



“Hilbert-style” proof systems

Prof. George talked about what are called “natural deduction
systems”. Here is a slightly different (but related!) approach to
proof systems.
An axiom system consists of

I axioms (special formulas)

I rules of inference: ways of getting new formulas from other
formulas. These have the form

A1, . . . ,An ` B

Read this as “from A1, . . . ,An, infer B.”

Think of the axioms as tautologies, while the rules of inference
give you a way to derive new tautologies from old ones.



Derivations
A derivation (or proof ) in an axiom system AX is a sequence of
formulas

C1, . . . ,CN ;

each formula Ck is either an axiom in AX or follows from previous
formulas using an inference rule in AX :

I i.e., there is an inference rule A1, . . . ,An ` B such that
Ai = Cji for some ji < N and B = CN .

This is said to be a derivation or proof of CN .

A derivation is a syntactic object: it’s just a sequence of formulas
that satisfy certain constraints.

I Whether a formula is derivable depends on the axiom system
I Different axioms → different formulas derivable
I Derivation has nothing to do with truth!

I How can we connect derivability and truth?
I In propositional logic, what is true depends on the truth

assignment
I In first-order logic, truth depends on the interpretation



Typical axioms of propositional logic:

I P ⇒ ¬¬P
I P ⇒ (Q ⇒ P)

What makes an axiom “acceptable”?

I it’s a tautology

Typical rule of inference is modus ponens

A⇒ B,A ` B

What makes an inference rule “acceptable”?

I it preserves validity

I if the formulas on the left-hand side of ` are tautologies, then
so is the formula on the right-hand side of `
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Sound and Complete Axiomatizations

Standard question in logic:

Can we come up with a nice sound and complete
axiomatization: a (small, natural) collection of axioms
and inference rules from which it is possible to derive all
and only the tautologies?

I Soundness says that only tautologies are derivable

I Completeness says you can derive all tautologies

If all the axioms are valid and all rules of inference preserve
validity, then all formulas that are derivable must be valid.

I Proof: by induction on the length of the derivation

It’s not so easy to find a complete axiomatization.



A Sound and Complete Axiomatization for Propositional
Logic

Consider the following axiom schemes:

A1. A⇒ (B ⇒ A)

A2. (A⇒ (B ⇒ C ))⇒ ((A⇒ B)⇒ (A⇒ C ))

A3. ((A⇒ B)⇒ (A⇒ ¬B))⇒ ¬A
These are axioms schemes; each one encodes an infinite set of
axioms:

I P ⇒ (Q ⇒ P) and (P ⇒ R)⇒ (Q ⇒ (P ⇒ R)) are
instances of A1.

Theorem: A1, A2, A3 + modus ponens give a sound and
complete axiomatization for formulas in propositional logic
involving only ⇒ and ¬.

I Recall: can define ∨ and ∧ using ⇒ and ¬
I P ∨ Q is equivalent to ¬P ⇒ Q
I P ∧ Q is equivalent to ¬(P ⇒ ¬Q)
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A Sample Proof

Derivation of P ⇒ P:

1. P ⇒ ((P ⇒ P)⇒ P)
[instance of A1: take A = P, B = P ⇒ P]

2. (P ⇒ ((P ⇒ P)⇒ P))⇒ ((P ⇒ (P ⇒ P))⇒ (P ⇒ P))
[instance of A2: take A = C = P, B = P ⇒ P]

3. (P ⇒ (P ⇒ P))⇒ (P ⇒ P)
[applying modus ponens to 1, 2]

4. P ⇒ (P ⇒ P) [instance of A1: take A = B = P]

5. P ⇒ P [applying modus ponens to 3, 4]

Try deriving P ⇒ ¬¬P from these axioms

I it’s hard!



It’s typically easier to check that a formula is a tautology than it is
to prove that it’s true, using the axioms

I Just try all truth assignments

Once you prove that an axiom system is sound and complete, you
know that if ϕ is a tautology, then there is a derivation of ϕ from
the axioms (even if it’s hard to find)



Syntax of First-Order Logic

We have:

I constant symbols: Alice, Bob

I variables: x , y , z , . . .
I predicate symbols of each arity: P, Q, R, . . .

I A unary predicate symbol takes one argument: P(Alice), Q(z)
I A binary predicate symbol takes two arguments:

Loves(Bob,Alice), Taller(Alice,Bob).

An atomic expression is a predicate symbol together with the
appropriate number of arguments.

I Atomic expressions act like primitive propositions in
propositional logic

I we can apply ∧, ∨, ¬ to them
I we can also quantify the variables that appear in them

Typical formula:

∀x∃y(P(x , y)⇒ ∃zQ(x , z))



Semantics of First-Order Logic
Assume we have some domain D.

I The domain could be finite:
I {1, 2, 3, 4, 5}
I the people in this room

I The domain could be infinite
I N, R, . . .

A statement like ∀xP(x) means that P(d) is true for each d in the
domain.

I If the domain is N, then ∀xP(x) is equivalent to

P(0) ∧ P(1) ∧ P(2) ∧ . . .

Similarly, ∃xP(x) means that P(d) is true for some d in the
domain.

I If the domain is N, then ∃xP(x) is equivalent to

P(0) ∨ P(1) ∨ P(2) ∨ . . .



Is ∃x(x2 = 2) true?

Yes if the domain is R; no if the domain is N.

How about ∀x∀y((x < y)⇒ ∃z(x < z < y))?



First-Order Logic: Formal Semantics

How do we decide if a first-order formula is true? Need:

I a domain D (what are you quantifying over)
I an interpretation I that interprets the constants and predicate

symbols:
I for each constant symbol c , I (c) ∈ D

I Which domain element is Alice?

I for each unary predicate P, I (P) is a predicate on domain D
I formally, I (P)(d) ∈ {true,false} for each d ∈ D
I Is Alice Tall? How about Bob?

I for each binary predicate Q, I (Q) is a predicate on D × D:
I formally, I (Q)(d1, d2) ∈ {true,false} for each d1, d2 ∈ D
I Is Alice taller than Bob?

I a valuation V associating with each variable x an element
V (x) ∈ D.

I To figure out if P(x) is true, you need to know what x is.



Defining Truth in First-Order Logic

Now we can define whether a formula A is true, given a domain D,
an interpretation I , and a valuation V , written (I ,D,V ) |= A.

I Read this from right to left: A is true at (|=) (I ,D,V )

The definition is by induction:

(I ,D,V ) |= P(x) if I (P)(V (x)) = true

(I ,D,V ) |= P(c) if I (P)(I (c))) = true

(I ,D,V ) |= ∀xA if (I ,D,V ′) |= A for all valuations V ′ that agree
with V except possibly on x

I V ′(y) = V (y) for all y 6= x

I V ′(x) can be arbitrary

(I ,D,V ) |= ∃xA if (I ,D,V ′) |= A for some valuation V ′ that
agrees with V except possibly on x .
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Translating from English to First-Order Logic

All men are mortal
Socrates is a man
Therefore Socrates is mortal

There is two unary predicates: Mortal and Man
There is one constant: Socrates
The domain is the set of all people

∀x(Man(x)⇒ Mortal(x))
Man(Socrates)
—————————————–
Mortal(Socrates)



More on Quantifiers

∀x∀yP(x , y) is equivalent to ∀y∀xP(x , y)

I P is true for every choice of x and y

Similarly ∃x∃yP(x , y) is equivalent to ∃y∃xP(x , y)

I P is true for some choice of (x , y).

What about ∀x∃yP(x , y)? Is it equivalent to ∃y∀xP(x , y)?
I Suppose the domain is the natural numbers. Compare:

I ∀x∃y(y ≥ x)
I ∃y∀x(y ≥ x)

In general, ∃y∀xP(x , y)⇒ ∀x∃yP(x , y) is logically valid.

I A logically valid formula in first-order logic is the analogue of
a tautology in propositional logic.

I A formula is logically valid if it’s true in every domain and for
every interpretation of the predicate symbols.



More valid formulas involving quantifiers:

I ¬∀xP(x)⇔ ∃x¬P(x)

I Replacing P by ¬P, we get:

¬∀x¬P(x)⇔ ∃x¬¬P(x)

I Therefore
¬∀x¬P(x)⇔ ∃xP(x)

I Similarly, we have

¬∃xP(x)⇔ ∀x¬P(x)

¬∃x¬P(x)⇔ ∀xP(x)



Axiomatizing First-Order Logic

Just as in propositional logic, there are axioms and rules of
inference that provide a sound and complete axiomatization for
first-order logic, independent of the domain.

A typical axiom:

I ∀x(P(x)⇒ Q(x))⇒ (∀xP(x)⇒ ∀xQ(x)).

A typical rule of inference is Universal Generalization:

ϕ(x) ` ∀xϕ(x)

Gödel provided a sound and complete axioms system for first-order
logic in 1930.



Axiomatizing Arithmetic

Suppose we restrict the domain to the natural numbers, and allow
only the standard symbols of arithmetic (+, ×, =, >, 0, 1).
Typical true formulas include:

I ∀x∃y(x × y = x)

I ∀x∃y(x = y + y ∨ x = y + y + 1)

Let Prime(x) be an abbreviation of

∀y∀z((x = y × z)⇒ ((y = 1) ∨ (y = x)))

When is Prime(x) true?

If x is prime!

What does the following formula say?

I ∀x(∃y(y > 1 ∧ x = y + y)⇒
∃z1∃z2(Prime(z1) ∧ Prime(z2) ∧ x = z1 + z2))

I This is Goldbach’s conjecture: every even number other than
2 is the sum of two primes.

I Is it true? We don’t know.
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Gödel’s Incompleteness Theorem

Is there a nice (technically: recursive, so that a program can check
whether a formula is an axiom) sound and complete axiomatization
for arithmetic?

I Gödel’s Incompleteness Theorem: NO!

This is arguably the most important result in mathematics of the
20th century.



Connections: Random Graphs

Suppose we have a random graph with n vertices. How likely is it
to be connected?

I What is a random graph?
I If it has n vertices, there are C (n, 2) possible edges, and 2C(n,2)

possible graphs. What fraction of them is connected?
I One way of thinking about this. Build a graph using a random

process, that puts each edge in with probability 1/2.



I Given three vertices a, b, and c , what’s the probability that
there is an edge between a and b and between b and c? 1/4

I What is the probability that there is no path of length 2
between a and c? (3/4)n−2

I What is the probability that there is a path of length 2
between a and c? 1− (3/4)n−2

I What is the probability that there is a path of length 2
between a and every other vertex? > (1− (3/4)n−2)n−1

Now use the binomial theorem to compute (1− (3/4)n−2)n−1

(1− (3/4)n−2)n−1

= 1− (n − 1)(3/4)n−2 + C (n − 1, 2)(3/4)2(n−2) + · · ·

For sufficiently large n, this will be (just about) 1.

Bottom line: If n is large, then it is almost certain that a random
graph will be connected. In fact, with probability approaching 1,
all nodes are connected by a path of length at most 2.



This is not a fluke!

Suppose we consider first-order logic with one binary predicate R.

I Interpretation: R(x , y) is true in a graph if there is a directed
edge from x to y .

What does this formula say:

∀x∀y(R(x , y) ∨ ∃z(R(x , z) ∧ R(z , y)

Theorem: [Fagin, 1976] If P is any property expressible in
first-order logic using a single binary predicate R, it is either true in
almost all graphs, or false in almost all graphs.

This is called a 0-1 law.
This is an example of a deep connection between logic, probability,
and graph theory.

I There are lots of others!



Eight Powerful Ideas
I Counting: Count without counting (combinatorics)

I Induction: Recognize it in all its guises.
I Exemplification: Find a sense in which you can try out a

problem or solution on small examples.
I Abstraction: Abstract away the inessential features of a

problem.
I represent it as a graph
I describe it in first-order logic

I Modularity: Decompose a complex problem into simpler
subproblems.

I Representation: Understand the relationships between
different representations of the same information or idea.

I Graphs vs. matrices vs. relations
I Probabilistic inference: Drawing inferences from data

I Bayes’ rule
I Probabilistic methods: Flipping a coin can be surprisingly

helpful!
I probabilistic primality checking
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(A Little Bit on) NP
(No details here; just a rough sketch of the ideas. Take CS
4810/4820 if you want more.)

NP = nondeterministic polynomial time

I a language (set of strings) L is in NP if, for each x ∈ L, you
can guess a witness y showing that x ∈ L and quickly (in
polynomial time) verify that it’s correct.

I Examples:
I Does a graph have a Hamiltonian path?

I guess a Hamiltonian path

I Is a formula satisfiable?
I guess a satisfying assignment

I Is there a schedule that satisfies certain constraints?
I . . .

Formally, L is in NP if there exists a language L′ such that

1. x ∈ L iff there exists a y such that (x , y) ∈ L′, and

2. checking if (x , y) ∈ L′ can be done in polynomial time



NP-completeness

I A problem is NP-hard if every NP problem can be reduced to
it.

A problem is NP-complete if it is in NP and NP-hard

I Intuitively, if it is one of the hardest problems in NP.

There are lots of problems known to be NP-complete
I If any NP complete problem is doable in polynomial time,

then they all are.
I Hamiltonian path
I satisfiability
I scheduling
I . . .

I If you can prove P = NP, you’ll get a Turing award.


