## Logic: The Big Picture

A typical logic is described in terms of

- syntax: what are the legitimate formulas
- semantics: under what circumstances is a formula true
- proof theory/ axiomatization: rules for proving a formula true

Truth and provability are quite different.

- What is provable depends on the axioms and inference rules you use
- Provability is a mechanical, turn-the-crank process
- What is true depends on the semantics


## "Hilbert-style" proof systems

Prof. George talked about what are called "natural deduction systems". Here is a slightly different (but related!) approach to proof systems.
An axiom system consists of

- axioms (special formulas)
- rules of inference: ways of getting new formulas from other formulas. These have the form

$$
A_{1}, \ldots, A_{n} \vdash B
$$

Read this as "from $A_{1}, \ldots, A_{n}$, infer $B$."
Think of the axioms as tautologies, while the rules of inference give you a way to derive new tautologies from old ones.

## Derivations

A derivation (or proof) in an axiom system $A X$ is a sequence of formulas

$$
C_{1}, \ldots, C_{N}
$$

each formula $C_{k}$ is either an axiom in $A X$ or follows from previous formulas using an inference rule in $A X$ :

- i.e., there is an inference rule $A_{1}, \ldots, A_{n} \vdash B$ such that $A_{i}=C_{j_{i}}$ for some $j_{i}<N$ and $B=C_{N}$.
This is said to be a derivation or proof of $C_{N}$.
A derivation is a syntactic object: it's just a sequence of formulas that satisfy certain constraints.
- Whether a formula is derivable depends on the axiom system
- Different axioms $\rightarrow$ different formulas derivable
- Derivation has nothing to do with truth!
- How can we connect derivability and truth?
- In propositional logic, what is true depends on the truth assignment
- In first-order logic, truth depends on the interpretation

Typical axioms of propositional logic:

- $P \Rightarrow \neg \neg P$
- $P \Rightarrow(Q \Rightarrow P)$

What makes an axiom "acceptable"?

- it's a tautology

Typical axioms of propositional logic:

- $P \Rightarrow \neg \neg P$
- $P \Rightarrow(Q \Rightarrow P)$

What makes an axiom "acceptable"?

- it's a tautology

Typical rule of inference is modus ponens

$$
A \Rightarrow B, A \vdash B
$$

What makes an inference rule "acceptable"?

- it preserves validity
- if the formulas on the left-hand side of $\vdash$ are tautologies, then so is the formula on the right-hand side of $\vdash$


## Sound and Complete Axiomatizations

Standard question in logic:
Can we come up with a nice sound and complete axiomatization: a (small, natural) collection of axioms and inference rules from which it is possible to derive all and only the tautologies?

- Soundness says that only tautologies are derivable
- Completeness says you can derive all tautologies

If all the axioms are valid and all rules of inference preserve validity, then all formulas that are derivable must be valid.

- Proof: by induction on the length of the derivation

It's not so easy to find a complete axiomatization.

## A Sound and Complete Axiomatization for Propositional Logic

Consider the following axiom schemes:

$$
\begin{aligned}
& \text { A1. } A \Rightarrow(B \Rightarrow A) \\
& \text { A2. }(A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)) \\
& \text { A3. }((A \Rightarrow B) \Rightarrow(A \Rightarrow \neg B)) \Rightarrow \neg A
\end{aligned}
$$

These are axioms schemes; each one encodes an infinite set of axioms:

- $P \Rightarrow(Q \Rightarrow P)$ and $(P \Rightarrow R) \Rightarrow(Q \Rightarrow(P \Rightarrow R))$ are instances of A .


## A Sound and Complete Axiomatization for Propositional Logic

Consider the following axiom schemes:

$$
\begin{aligned}
& \text { A1. } A \Rightarrow(B \Rightarrow A) \\
& \text { A2. }(A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)) \\
& \text { A3. }((A \Rightarrow B) \Rightarrow(A \Rightarrow \neg B)) \Rightarrow \neg A
\end{aligned}
$$

These are axioms schemes; each one encodes an infinite set of axioms:

- $P \Rightarrow(Q \Rightarrow P)$ and $(P \Rightarrow R) \Rightarrow(Q \Rightarrow(P \Rightarrow R))$ are instances of A 1 .

Theorem: A1, A2, A3 + modus ponens give a sound and complete axiomatization for formulas in propositional logic involving only $\Rightarrow$ and $\neg$.

- Recall: can define $\vee$ and $\wedge$ using $\Rightarrow$ and $\neg$
- $P \vee Q$ is equivalent to $\neg P \Rightarrow Q$
- $P \wedge Q$ is equivalent to $\neg(P \Rightarrow \neg Q)$


## A Sample Proof

Derivation of $P \Rightarrow P$ :

1. $P \Rightarrow((P \Rightarrow P) \Rightarrow P)$ [instance of A1: take $A=P, B=P \Rightarrow P$ ]
2. $(P \Rightarrow((P \Rightarrow P) \Rightarrow P)) \Rightarrow((P \Rightarrow(P \Rightarrow P)) \Rightarrow(P \Rightarrow P))$ [instance of A2: take $A=C=P, B=P \Rightarrow P$ ]
3. $(P \Rightarrow(P \Rightarrow P)) \Rightarrow(P \Rightarrow P)$
[applying modus ponens to 1, 2]
4. $P \Rightarrow(P \Rightarrow P) \quad$ [instance of $A 1$ : take $A=B=P]$
5. $P \Rightarrow P \quad$ [applying modus ponens to 3,4 ]

Try deriving $P \Rightarrow \neg \neg P$ from these axioms

- it's hard!

It's typically easier to check that a formula is a tautology than it is to prove that it's true, using the axioms

- Just try all truth assignments

Once you prove that an axiom system is sound and complete, you know that if $\varphi$ is a tautology, then there is a derivation of $\varphi$ from the axioms (even if it's hard to find)

## Syntax of First-Order Logic

We have:

- constant symbols: Alice, Bob
- variables: $x, y, z, \ldots$
- predicate symbols of each arity: $P, Q, R, \ldots$
- A unary predicate symbol takes one argument: $P($ Alice $), Q(z)$
- A binary predicate symbol takes two arguments: Loves(Bob,Alice), Taller(Alice,Bob).
An atomic expression is a predicate symbol together with the appropriate number of arguments.
- Atomic expressions act like primitive propositions in propositional logic
- we can apply $\wedge, \vee$, $\neg$ to them
- we can also quantify the variables that appear in them

Typical formula:

$$
\forall x \exists y(P(x, y) \Rightarrow \exists z Q(x, z))
$$

## Semantics of First-Order Logic

Assume we have some domain $D$.

- The domain could be finite:
- $\{1,2,3,4,5\}$
- the people in this room
- The domain could be infinite
- $N, R, \ldots$

A statement like $\forall x P(x)$ means that $P(d)$ is true for each $d$ in the domain.

- If the domain is $N$, then $\forall x P(x)$ is equivalent to

$$
P(0) \wedge P(1) \wedge P(2) \wedge \ldots
$$

Similarly, $\exists x P(x)$ means that $P(d)$ is true for some $d$ in the domain.

- If the domain is $N$, then $\exists x P(x)$ is equivalent to

$$
P(0) \vee P(1) \vee P(2) \vee \ldots
$$

Is $\exists x\left(x^{2}=2\right)$ true?
Yes if the domain is $R$; no if the domain is $N$.
How about $\forall x \forall y((x<y) \Rightarrow \exists z(x<z<y))$ ?

## First-Order Logic: Formal Semantics

How do we decide if a first-order formula is true? Need:

- a domain $D$ (what are you quantifying over)
- an interpretation I that interprets the constants and predicate symbols:
- for each constant symbol $c, I(c) \in D$
- Which domain element is Alice?
- for each unary predicate $P, I(P)$ is a predicate on domain $D$
- formally, $I(P)(d) \in\{$ true,false $\}$ for each $d \in D$
- Is Alice Tall? How about Bob?
- for each binary predicate $Q, I(Q)$ is a predicate on $D \times D$ :
- formally, $I(Q)\left(d_{1}, d_{2}\right) \in\{$ true,false $\}$ for each $d_{1}, d_{2} \in D$
- Is Alice taller than Bob?
- a valuation $V$ associating with each variable $x$ an element $V(x) \in D$.
- To figure out if $P(x)$ is true, you need to know what $x$ is.


## Defining Truth in First-Order Logic

Now we can define whether a formula $A$ is true, given a domain $D$, an interpretation $I$, and a valuation $V$, written $(I, D, V) \models A$.

- Read this from right to left: $A$ is true at $(\models)(I, D, V)$


## Defining Truth in First-Order Logic

Now we can define whether a formula $A$ is true, given a domain $D$, an interpretation $I$, and a valuation $V$, written $(I, D, V) \models A$.

- Read this from right to left: $A$ is true at $(\models)(I, D, V)$ The definition is by induction:
$(I, D, V) \models P(x)$ if $I(P)(V(x))=$ true


## Defining Truth in First-Order Logic

Now we can define whether a formula $A$ is true, given a domain $D$, an interpretation $I$, and a valuation $V$, written $(I, D, V) \models A$.

- Read this from right to left: $A$ is true at $(\models)(I, D, V)$ The definition is by induction:
$(I, D, V) \models P(x)$ if $I(P)(V(x))=$ true $(I, D, V) \models P(c)$ if $I(P)(I(c)))=$ true


## Defining Truth in First-Order Logic

Now we can define whether a formula $A$ is true, given a domain $D$, an interpretation $I$, and a valuation $V$, written $(I, D, V) \models A$.

- Read this from right to left: $A$ is true at $(\models)(I, D, V)$ The definition is by induction:
$(I, D, V) \models P(x)$ if $I(P)(V(x))=$ true $(I, D, V) \models P(c)$ if $I(P)(I(c)))=$ true $(I, D, V) \models \forall x A$ if $\left(I, D, V^{\prime}\right) \models A$ for all valuations $V^{\prime}$ that agree with $V$ except possibly on $x$
- $V^{\prime}(y)=V(y)$ for all $y \neq x$
- $V^{\prime}(x)$ can be arbitrary
$(I, D, V) \models \exists x A$ if $\left(I, D, V^{\prime}\right) \models A$ for some valuation $V^{\prime}$ that agrees with $V$ except possibly on $x$.


## Defining Truth in First-Order Logic

Now we can define whether a formula $A$ is true, given a domain $D$, an interpretation $I$, and a valuation $V$, written $(I, D, V) \models A$.

- Read this from right to left: $A$ is true at $(\models)(I, D, V)$ The definition is by induction:
$(I, D, V) \models P(x)$ if $I(P)(V(x))=$ true $(I, D, V) \models P(c)$ if $I(P)(I(c)))=$ true $(I, D, V) \models \forall x A$ if $\left(I, D, V^{\prime}\right) \models A$ for all valuations $V^{\prime}$ that agree with $V$ except possibly on $x$
- $V^{\prime}(y)=V(y)$ for all $y \neq x$
- $V^{\prime}(x)$ can be arbitrary
$(I, D, V) \models \exists x A$ if $\left(I, D, V^{\prime}\right) \models A$ for some valuation $V^{\prime}$ that agrees with $V$ except possibly on $x$.


## Translating from English to First-Order Logic

All men are mortal
Socrates is a man
Therefore Socrates is mortal
There is two unary predicates: Mortal and Man
There is one constant: Socrates
The domain is the set of all people
$\forall x(\operatorname{Man}(x) \Rightarrow \operatorname{Mortal}(x))$
Man(Socrates)
Mortal(Socrates)

## More on Quantifiers

$\forall x \forall y P(x, y)$ is equivalent to $\forall y \forall x P(x, y)$

- $P$ is true for every choice of $x$ and $y$

Similarly $\exists x \exists y P(x, y)$ is equivalent to $\exists y \exists x P(x, y)$

- $P$ is true for some choice of $(x, y)$.

What about $\forall x \exists y P(x, y)$ ? Is it equivalent to $\exists y \forall x P(x, y)$ ?

- Suppose the domain is the natural numbers. Compare:
- $\forall x \exists y(y \geq x)$
- $\exists y \forall x(y \geq x)$

In general, $\exists y \forall x P(x, y) \Rightarrow \forall x \exists y P(x, y)$ is logically valid.

- A logically valid formula in first-order logic is the analogue of a tautology in propositional logic.
- A formula is logically valid if it's true in every domain and for every interpretation of the predicate symbols.

More valid formulas involving quantifiers:

- $\neg \forall x P(x) \Leftrightarrow \exists x \neg P(x)$
- Replacing $P$ by $\neg P$, we get:

$$
\neg \forall x \neg P(x) \Leftrightarrow \exists x \neg \neg P(x)
$$

- Therefore

$$
\neg \forall x \neg P(x) \Leftrightarrow \exists x P(x)
$$

- Similarly, we have

$$
\begin{aligned}
& \neg \exists x P(x) \Leftrightarrow \forall x \neg P(x) \\
& \neg \exists x \neg P(x) \Leftrightarrow \forall x P(x)
\end{aligned}
$$

## Axiomatizing First-Order Logic

Just as in propositional logic, there are axioms and rules of inference that provide a sound and complete axiomatization for first-order logic, independent of the domain.

A typical axiom:

- $\forall x(P(x) \Rightarrow Q(x)) \Rightarrow(\forall x P(x) \Rightarrow \forall x Q(x))$.

A typical rule of inference is Universal Generalization:

$$
\varphi(x) \vdash \forall x \varphi(x)
$$

Gödel provided a sound and complete axioms system for first-order logic in 1930.

## Axiomatizing Arithmetic

Suppose we restrict the domain to the natural numbers, and allow only the standard symbols of arithmetic $(+, \times,=,>, 0,1)$. Typical true formulas include:

- $\forall x \exists y(x \times y=x)$
- $\forall x \exists y(x=y+y \vee x=y+y+1)$

Let $\operatorname{Prime}(x)$ be an abbreviation of

$$
\forall y \forall z((x=y \times z) \Rightarrow((y=1) \vee(y=x)))
$$

When is Prime $(x)$ true?

## Axiomatizing Arithmetic

Suppose we restrict the domain to the natural numbers, and allow only the standard symbols of arithmetic $(+, \times,=,>, 0,1)$. Typical true formulas include:

- $\forall x \exists y(x \times y=x)$
- $\forall x \exists y(x=y+y \vee x=y+y+1)$

Let $\operatorname{Prime}(x)$ be an abbreviation of

$$
\forall y \forall z((x=y \times z) \Rightarrow((y=1) \vee(y=x)))
$$

When is Prime $(x)$ true? If $x$ is prime!

## Axiomatizing Arithmetic

Suppose we restrict the domain to the natural numbers, and allow only the standard symbols of arithmetic $(+, \times,=,>, 0,1)$. Typical true formulas include:

- $\forall x \exists y(x \times y=x)$
- $\forall x \exists y(x=y+y \vee x=y+y+1)$

Let Prime $(x)$ be an abbreviation of

$$
\forall y \forall z((x=y \times z) \Rightarrow((y=1) \vee(y=x)))
$$

When is $\operatorname{Prime}(x)$ true? If $x$ is prime!
What does the following formula say?

- $\forall x(\exists y(y>1 \wedge x=y+y) \Rightarrow$

$$
\left.\exists z_{1} \exists z_{2}\left(\operatorname{Prime}\left(z_{1}\right) \wedge \operatorname{Prime}\left(z_{2}\right) \wedge x=z_{1}+z_{2}\right)\right)
$$

## Axiomatizing Arithmetic

Suppose we restrict the domain to the natural numbers, and allow only the standard symbols of arithmetic $(+, \times,=,>, 0,1)$. Typical true formulas include:

- $\forall x \exists y(x \times y=x)$
- $\forall x \exists y(x=y+y \vee x=y+y+1)$

Let Prime $(x)$ be an abbreviation of

$$
\forall y \forall z((x=y \times z) \Rightarrow((y=1) \vee(y=x)))
$$

When is Prime $(x)$ true? If $x$ is prime!
What does the following formula say?

- $\forall x(\exists y(y>1 \wedge x=y+y) \Rightarrow$

$$
\left.\exists z_{1} \exists z_{2}\left(\operatorname{Prime}\left(z_{1}\right) \wedge \operatorname{Prime}\left(z_{2}\right) \wedge x=z_{1}+z_{2}\right)\right)
$$

- This is Goldbach's conjecture: every even number other than 2 is the sum of two primes.
- Is it true? We don't know.


## Gödel's Incompleteness Theorem

Is there a nice (technically: recursive, so that a program can check whether a formula is an axiom) sound and complete axiomatization for arithmetic?

- Gödel's Incompleteness Theorem: NO!

This is arguably the most important result in mathematics of the 20th century.

## Connections: Random Graphs

Suppose we have a random graph with $n$ vertices. How likely is it to be connected?

- What is a random graph?
- If it has $n$ vertices, there are $C(n, 2)$ possible edges, and $2^{C(n, 2)}$ possible graphs. What fraction of them is connected?
- One way of thinking about this. Build a graph using a random process, that puts each edge in with probability $1 / 2$.
- Given three vertices $a, b$, and $c$, what's the probability that there is an edge between $a$ and $b$ and between $b$ and $c$ ? $1 / 4$
- What is the probability that there is no path of length 2 between $a$ and $c$ ? $(3 / 4)^{n-2}$
- What is the probability that there is a path of length 2 between $a$ and $c$ ? $1-(3 / 4)^{n-2}$
- What is the probability that there is a path of length 2 between $a$ and every other vertex? $>\left(1-(3 / 4)^{n-2}\right)^{n-1}$
Now use the binomial theorem to compute $\left(1-(3 / 4)^{n-2}\right)^{n-1}$

$$
\begin{aligned}
& \left(1-(3 / 4)^{n-2}\right)^{n-1} \\
= & 1-(n-1)(3 / 4)^{n-2}+C(n-1,2)(3 / 4)^{2(n-2)}+\cdots
\end{aligned}
$$

For sufficiently large $n$, this will be (just about) 1 .
Bottom line: If $n$ is large, then it is almost certain that a random graph will be connected. In fact, with probability approaching 1, all nodes are connected by a path of length at most 2 .

This is not a fluke!
Suppose we consider first-order logic with one binary predicate $R$.

- Interpretation: $R(x, y)$ is true in a graph if there is a directed edge from $x$ to $y$.
What does this formula say:

$$
\forall x \forall y(R(x, y) \vee \exists z(R(x, z) \wedge R(z, y)
$$

Theorem: [Fagin, 1976] If $P$ is any property expressible in first-order logic using a single binary predicate $R$, it is either true in almost all graphs, or false in almost all graphs.

This is called a 0-1 law.
This is an example of a deep connection between logic, probability, and graph theory.

- There are lots of others!


## Eight Powerful Ideas

- Counting: Count without counting (combinatorics)


## Eight Powerful Ideas

- Counting: Count without counting (combinatorics)
- Induction: Recognize it in all its guises.


## Eight Powerful Ideas

- Counting: Count without counting (combinatorics)
- Induction: Recognize it in all its guises.
- Exemplification: Find a sense in which you can try out a problem or solution on small examples.


## Eight Powerful Ideas

- Counting: Count without counting (combinatorics)
- Induction: Recognize it in all its guises.
- Exemplification: Find a sense in which you can try out a problem or solution on small examples.
- Abstraction: Abstract away the inessential features of a problem.
- represent it as a graph
- describe it in first-order logic


## Eight Powerful Ideas

- Counting: Count without counting (combinatorics)
- Induction: Recognize it in all its guises.
- Exemplification: Find a sense in which you can try out a problem or solution on small examples.
- Abstraction: Abstract away the inessential features of a problem.
- represent it as a graph
- describe it in first-order logic
- Modularity: Decompose a complex problem into simpler subproblems.


## Eight Powerful Ideas

- Counting: Count without counting (combinatorics)
- Induction: Recognize it in all its guises.
- Exemplification: Find a sense in which you can try out a problem or solution on small examples.
- Abstraction: Abstract away the inessential features of a problem.
- represent it as a graph
- describe it in first-order logic
- Modularity: Decompose a complex problem into simpler subproblems.
- Representation: Understand the relationships between different representations of the same information or idea.
- Graphs vs. matrices vs. relations


## Eight Powerful Ideas

- Counting: Count without counting (combinatorics)
- Induction: Recognize it in all its guises.
- Exemplification: Find a sense in which you can try out a problem or solution on small examples.
- Abstraction: Abstract away the inessential features of a problem.
- represent it as a graph
- describe it in first-order logic
- Modularity: Decompose a complex problem into simpler subproblems.
- Representation: Understand the relationships between different representations of the same information or idea.
- Graphs vs. matrices vs. relations
- Probabilistic inference: Drawing inferences from data
- Bayes' rule
- Probabilistic methods: Flipping a coin can be surprisingly helpful!
- probabilistic primality checking


## (A Little Bit on) NP

(No details here; just a rough sketch of the ideas. Take CS 4810/4820 if you want more.)
$N P=$ nondeterministic polynomial time

- a language (set of strings) $L$ is in NP if, for each $x \in L$, you can guess a witness $y$ showing that $x \in L$ and quickly (in polynomial time) verify that it's correct.
- Examples:
- Does a graph have a Hamiltonian path?
- guess a Hamiltonian path
- Is a formula satisfiable?
- guess a satisfying assignment
- Is there a schedule that satisfies certain constraints?
- ...

Formally, $L$ is in NP if there exists a language $L^{\prime}$ such that

1. $x \in L$ iff there exists a $y$ such that $(x, y) \in L^{\prime}$, and
2. checking if $(x, y) \in L^{\prime}$ can be done in polynomial time

## NP-completeness

- A problem is NP-hard if every NP problem can be reduced to it.

A problem is NP-complete if it is in NP and NP-hard

- Intuitively, if it is one of the hardest problems in NP.

There are lots of problems known to be NP-complete

- If any NP complete problem is doable in polynomial time, then they all are.
- Hamiltonian path
- satisfiability
- scheduling
- ...
- If you can prove $P=N P$, you'll get a Turing award.

