- 1. True/false. For each of the following statements, indicate whether the statement is true or false. Give a one or two sentence explanation for your answer.
 - (a) A proof that starts "Choose an arbitrary $y \in \mathbb{N}$, and let $x = y^2$ " is likely to be a proof that $\forall y \in \mathbb{N}, \forall x \in \mathbb{N}, \ldots$
 - (b) The set of real numbers (\mathbb{R}) is countable.
 - (c) The set of rational numbers (\mathbb{Q}) is countable.
 - (d) Recall that $[X \to Y]$ denotes the set of functions with domain X and codomain Y. Let $f : 2^S \to [S \to \{0,1\}]$ be given by $f : X \mapsto h$ where $h : S \to \{0,1\}$ is given by $h : s \mapsto 0$. f is one-to-one.
 - (e) f as just defined is onto.
- 2. Prove the following claim using induction: for any $n \ge 0$, $\sum_{i=0}^{n} 2^{i} = 2^{n+1} 1$
- 3. Complete the following diagonalization proof:

Claim: $X = [\mathbb{N} \to \mathbb{N}]$ is uncountable.

Proof: We prove this claim by contradiction. Assume that X is countable. Then there exists a function $F : \mathbf{FILL} \mathbf{IN}$ that is **FILL IN**.

Write $f_0 = F(0)$, $f_1 = F(1)$, and so on. We can write the elements of X in a table:

	0	1	2	•••
f_0	$f_0(0)$	$f_0(1)$	$f_0(2)$	•••
f_1	$f_1(0)$	$f_1(1)$	$f_1(2)$	•••
÷		:		·

Let f_D : **FILL IN** be given by $f_D: x \mapsto$ **FILL IN**

Then ${\bf FILL}~{\bf IN}$

This is a contradiction because **FILL IN**.

- 4. Compute 10101b + 101b (recall that b indicates the strings of digits should be interpreted as integers using the binary representation). Express your answer in both binary and decimal.
- 5. Suppose you are given a function $f : \mathbb{N} \to \mathbb{N}$, and are told that f(1) = 1 and for all $n, f(n) \le 2f(\lfloor n/2 \rfloor) + 1$. Use strong induction on n to prove that for all $n \ge 2$, $f(n) \le 2n \log_2 n$.

You may write log to indicate \log_2 . Here is a reminder of some facts about $\lfloor x \rfloor$ and $\log x$:

•	$\lfloor x \rfloor \leq x$	•	$\log(2^x) = x$
•	$\log 1 = 0, \log 2 = 1$	•	$\log(x^2) = 2\log x$

- $\log(x/2) = \log x 1$ • if $x \le y$ then $\log x \le \log y$
- 6. In this problem, we are working mod 7, i.e. \equiv denotes congruence mod 7 and [a] is the equivalence of a mod 7.
 - (a) What are the units of \mathbb{Z}_7 ? What are their inverses?

(b) Compute $[2]^{393}$.

- 7. Which of the following sets are countably infinite and which are not countably infinite? Give a one to five sentence justification for your answer.
 - (a) The set Σ^* containing all finite length strings of 0's and 1's.
 - (b) The set $2^{\mathbb{N}}$ containing all sets of natural numbers.
 - (c) The set $\mathbb{N} \times \mathbb{N}$ containing all pairs of natural numbers.
 - (d) The set $[\mathbb{N} \to \{0, 1\}]$ containing all functions from \mathbb{N} to $\{0, 1\}$.

Be sure to include enough detail:

- If listing elements, be sure to clearly state how you are listing them;
- If diagonalizing, be sure it is clear what your diagonal construction is;
- If providing a function, make sure it is clear what the output is on a given input.
- 8. Use Euler's theorem and repeated squaring to efficiently compute $8^n \mod 15$ for n = 5, n = 81 and n = 16023. Hint: you can solve this problem with 4 multiplications of single digit numbers. Please fully evaluate all expressions for this question (e.g. write 15 instead of $3 \cdot 5$).
- 9. For any function $f : A \to B$ and a set $C \subseteq A$, define $f(C) = \{f(x) \mid x \in C\}$. That is, f(C) is the set of images of elements of C. Prove that if f is injective, then $f(C_1 \cap C_2) = f(C_1) \cap f(C_2)$ for all $C_1, C_2 \subseteq A$.

(*Hint*: one way to prove this is from the definition of set equality: A = B iff $A \subseteq B$ and $B \subseteq A$.)

10. The Fibonacci numbers F_0, F_1, F_2, \ldots are defined inductively as follows:

$$\begin{split} F_0 &= 1 \\ F_1 &= 1 \\ F_n &= F_{n-1} + F_{n-2} \quad \text{for } n \geq 2 \end{split}$$

That is, each Fibonacci number is the sum of the previous two numbers in the sequence. Prove by induction that for all natural numbers n (including 0):

$$\sum_{i=0}^{n} F_i = F_{n+2} - 1$$

- 11. Prove by induction that for any integer $n \ge 3$, $n^2 7n + 12$ is non-negative.
- 12. (a) Recall Bézout's identity from the homework: for any integers n and m, there exist integers s and t such that gcd(n,m) = sn + tm. Use this to show that if gcd(k,m) = 1 then [k] is a unit of \mathbb{Z}_m .
 - (b) Use part (a) to show that if p is prime, then $\phi(p) = p 1$.
 - (c) Use Euler's theorem to compute $3^{38} \mod 37$ (note: 37 is prime).
- 13. To disprove $\exists x, \neg \forall y, \neg \exists z, \neg F(x, y, z)$, what would you need to show?
 - (a) $\exists x, \exists y, \exists z, F(x, y, z)$
 - (b) $\exists x, \exists y, \exists z, \neg F(x, y, z)$
 - (c) $\forall x, \forall y, \forall z, F(x, y, z)$
 - (d) $\forall x, \forall y, \forall z, \neg F(x, y, z)$
- 14. (a) Write the definition of " $f: A \to B$ is injective" using formal notation $(\forall, \exists, \land, \lor, \neg, \Rightarrow, =, \neq, \ldots)$.

- (b) Similarly, write down the definition of " $f: A \to B$ is surjective".
- (c) Write down the definition of "A is countable". You may write "f is surjective" or "f is injective" in your expression. (Note: we gave two slightly different definitions of countable in lecture; we will accept either answer).
- 15. Recall that the composition of two functions $f: B \to C$ and $g: A \to B$ is the function $f \circ g: A \to C$ defined as $(f \circ g)(x) = f(g(x))$. Prove that if f and g are both injective, then $f \circ g$ is injective.
- 16. For each of the following functions, indicate whether the function f is injective, whether it is surjective, and whether it is bijective. Give a one sentence explanation for each answer.
 - (a) $f: \mathbb{N} \to \mathbb{N}$ given by $f: x \to x^2$
 - (b) $f: \mathbb{R} \to \mathbb{R}$ given by $f: x \to x^2$
 - (c) $f: X \to [Y \to X]$ given by $f: x \mapsto h_x$ where $h_x: Y \to X$ is given by $h_x: y \mapsto x$.
- 17. A chocolate bar consists of n identical square pieces arranged in an unbroken rectangular grid. For instance, a 12-piece bar might be a 3×4 , 2×6 or 1×12 grid. A single snap breaks the bar along a straight line separating the squares, into two smaller rectangular pieces. Prove that regardless of the initial dimensions of the bar, any n-piece bar requires exactly n 1 snaps to break it up into individual squares.
- 18. Briefly and clearly identify the errors in each of the following proofs:
 - (a) **Proof that 1 is the largest natural number:** Let *n* be the largest natural number. Then n^2 , being a natural number, is less than or equal to *n*. Therefore $n^2 n = n(n-1) \le 0$. Hence $0 \le n \le 1$. Therefore n = 1.
 - (b) Proof that 2 = 1: Let a = b.

$$\Rightarrow \qquad a^2 = ab$$

$$\Rightarrow \qquad a^2 - b^2 = ab - b^2$$

$$\Rightarrow \qquad (a+b)(a-b) = b(a-b)$$

$$\Rightarrow \qquad a+b = b$$

Setting a = b = 1, we get 2 = 1.

(c) **Proof that** $(a+b)(a-b) = a^2 - b^2$:

To prove: $(a+b)(a-b) = a^2 - b^2$ $\Rightarrow a^2 - ab + ab - b^2 = a^2 - b^2$ $\Rightarrow a^2 - b^2 = a^2 - b^2$

... which is true, hence the result is proved.

- 19. Prove that $7^m 1$ is divisible by 6 for all positive integers m.
- 20. Prove that

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$

for all positive integers n.

21. Prove by induction that the sum of the interior angles of a convex¹ polygon with n sides (and hence n vertices) is 180(n-2) degrees. You may use the fact that the sum of the interior angles of a triangle is 180 degrees. You do not need to prove straightforward geometrical facts rigorously (check with us if unsure).

¹A polygon is convex if, for all vertices p and q of the polygon, the line joining p and q lies entirely within the polygon.

- 22. Suppose that Alice sends the message a to Bob, encrypted using RSA. Suppose that Bob's implementation of RSA is buggy, and computes $k^{-1} \mod 4\phi(m)$ instead of $k^{-1} \mod \phi(m)$. What decrypted message does Bob see? Justify your answer.
- 23. (a) What are the units of $\mathbb{Z} \mod 12$?
 - (b) What are their inverses?
 - (c) What is $\phi(12)$?
- 24. (a) Let $[X \to Y]$ denote the set of all functions with domain X and codomain Y. Give a function f from $[X \to Y] \times [Y \to Z]$ to $[X \to Z]$.
 - (b) Is your function injective? Is it surjective? Is it bijective?
 - (c) Based on your function, what can you conclude about the relationship between the cardinality of $[X \to Y] \times [Y \to Z]$ and the cardinality of $[X \to Z]$?