1. True/false. For each of the following statements, indicate whether the statement is true or false. Give a one or two sentence explanation for your answer.
(a) A proof that starts "Choose an arbitrary $y \in \mathbb{N}$, and let $x=y^{2}$ " is likely to be a proof that $\forall y \in \mathbb{N}, \forall x \in \mathbb{N}, \ldots$
(b) The set of real numbers (\mathbb{R}) is countable.
(c) The set of rational numbers (\mathbb{Q}) is countable.
(d) Recall that $\left[X \rightarrow Y\right.$] denotes the set of functions with domain X and codomain Y. Let $f: 2^{S} \rightarrow$ [$S \rightarrow\{0,1\}$] be given by $f: X \mapsto h$ where $h: S \rightarrow\{0,1\}$ is given by $h: s \mapsto 0 . f$ is one-to-one.
(e) f as just defined is onto.
2. Prove the following claim using induction: for any $n \geq 0, \sum_{i=0}^{n} 2^{i}=2^{n+1}-1$
3. Complete the following diagonalization proof:

Claim: $X=[\mathbb{N} \rightarrow \mathbb{N}]$ is uncountable.
Proof: We prove this claim by contradiction. Assume that X is countable. Then there exists a function $F:$ FILL IN that is FILL IN.

Write $f_{0}=F(0), f_{1}=F(1)$, and so on. We can write the elements of X in a table:

	0	1	2	\cdots
f_{0}	$f_{0}(0)$	$f_{0}(1)$	$f_{0}(2)$	\cdots
f_{1}	$f_{1}(0)$	$f_{1}(1)$	$f_{1}(2)$	\cdots
\vdots	\vdots	\vdots		\ddots

Let f_{D} : FILL IN be given by $f_{D}: x \mapsto$ FILL IN

Then FILL IN

This is a contradiction because FILL IN.
4. Compute $10101 b+101 b$ (recall that b indicates the strings of digits should be interpreted as integers using the binary representation). Express your answer in both binary and decimal.
5. Suppose you are given a function $f: \mathbb{N} \rightarrow \mathbb{N}$, and are told that $f(1)=1$ and for all $n, f(n) \leq 2 f(\lfloor n / 2\rfloor)+1$.

Use strong induction on n to prove that for all $n \geq 2, f(n) \leq 2 n \log _{2} n$.
You may write \log to indicate $\log _{2}$. Here is a reminder of some facts about $\lfloor x\rfloor$ and $\log x$:

- $\lfloor x\rfloor \leq x$
- $\log \left(2^{x}\right)=x$
- $\log 1=0, \log 2=1$
- $\log \left(x^{2}\right)=2 \log x$
- $\log (x / 2)=\log x-1$
- if $x \leq y$ then $\log x \leq \log y$

6. In this problem, we are working $\bmod 7$, i.e. \equiv denotes congruence $\bmod 7$ and $[a]$ is the equivalence of a $\bmod 7$.
(a) What are the units of \mathbb{Z}_{7} ? What are their inverses?
(b) Compute $[2]^{393}$.
7. Which of the following sets are countably infinite and which are not countably infinite? Give a one to five sentence justification for your answer.
(a) The set Σ^{*} containing all finite length strings of 0 's and 1 's.
(b) The set $2^{\mathbb{N}}$ containing all sets of natural numbers.
(c) The set $\mathbb{N} \times \mathbb{N}$ containing all pairs of natural numbers.
(d) The set $[\mathbb{N} \rightarrow\{0,1\}]$ containing all functions from \mathbb{N} to $\{0,1\}$.

Be sure to include enough detail:

- If listing elements, be sure to clearly state how you are listing them;
- If diagonalizing, be sure it is clear what your diagonal construction is;
- If providing a function, make sure it is clear what the output is on a given input.

8. Use Euler's theorem and repeated squaring to efficiently compute $8^{n} \bmod 15$ for $n=5, n=81$ and $n=16023$. Hint: you can solve this problem with 4 multiplications of single digit numbers. Please fully evaluate all expressions for this question (e.g. write 15 instead of $3 \cdot 5$).
9. For any function $f: A \rightarrow B$ and a set $C \subseteq A$, define $f(C)=\{f(x) \mid x \in C\}$. That is, $f(C)$ is the set of images of elements of C. Prove that if f is injective, then $f\left(C_{1} \cap C_{2}\right)=f\left(C_{1}\right) \cap f\left(C_{2}\right)$ for all $C_{1}, C_{2} \subseteq A$.
(Hint: one way to prove this is from the definition of set equality: $A=B$ iff $A \subseteq B$ and $B \subseteq A$.)
10. The Fibonacci numbers $F_{0}, F_{1}, F_{2}, \ldots$ are defined inductively as follows:

$$
\begin{aligned}
& F_{0}=1 \\
& F_{1}=1 \\
& F_{n}=F_{n-1}+F_{n-2} \quad \text { for } n \geq 2
\end{aligned}
$$

That is, each Fibonacci number is the sum of the previous two numbers in the sequence. Prove by induction that for all natural numbers n (including 0):

$$
\sum_{i=0}^{n} F_{i}=F_{n+2}-1
$$

11. Prove by induction that for any integer $n \geq 3, n^{2}-7 n+12$ is non-negative.
12. (a) Recall Bézout's identity from the homework: for any integers n and m, there exist integers s and t such that $\operatorname{gcd}(n, m)=s n+t m$. Use this to show that if $\operatorname{gcd}(k, m)=1$ then $[k]$ is a unit of \mathbb{Z}_{m}.
(b) Use part (a) to show that if p is prime, then $\phi(p)=p-1$.
(c) Use Euler's theorem to compute $3^{38} \bmod 37$ (note: 37 is prime).
13. To disprove $\exists x, \neg \forall y, \neg \exists z, \neg F(x, y, z)$, what would you need to show?
(a) $\exists x, \exists y, \exists z, F(x, y, z)$
(b) $\exists x, \exists y, \exists z, \neg F(x, y, z)$
(c) $\forall x, \forall y, \forall z, F(x, y, z)$
(d) $\forall x, \forall y, \forall z, \neg F(x, y, z)$
14. (a) Write the definition of " $f: A \rightarrow B$ is injective" using formal notation $(\forall, \exists, \wedge, \vee, \neg, \Rightarrow,=, \neq, \ldots)$.
(b) Similarly, write down the definition of " $f: A \rightarrow B$ is surjective".
(c) Write down the definition of " A is countable". You may write " f is surjective" or " f is injective" in your expression. (Note: we gave two slightly different definitions of countable in lecture; we will accept either answer).
15. Recall that the composition of two functions $f: B \rightarrow C$ and $g: A \rightarrow B$ is the function $f \circ g: A \rightarrow C$ defined as $(f \circ g)(x)=f(g(x))$. Prove that if f and g are both injective, then $f \circ g$ is injective.
16. For each of the following functions, indicate whether the function f is injective, whether it is surjective, and whether it is bijective. Give a one sentence explanation for each answer.
(a) $f: \mathbb{N} \rightarrow \mathbb{N}$ given by $f: x \rightarrow x^{2}$
(b) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f: x \rightarrow x^{2}$
(c) $f: X \rightarrow[Y \rightarrow X]$ given by $f: x \mapsto h_{x}$ where $h_{x}: Y \rightarrow X$ is given by $h_{x}: y \mapsto x$.
17. A chocolate bar consists of n identical square pieces arranged in an unbroken rectangular grid. For instance, a 12 -piece bar might be a $3 \times 4,2 \times 6$ or 1×12 grid. A single snap breaks the bar along a straight line separating the squares, into two smaller rectangular pieces. Prove that regardless of the initial dimensions of the bar, any n-piece bar requires exactly $n-1$ snaps to break it up into individual squares.
18. Briefly and clearly identify the errors in each of the following proofs:
(a) Proof that 1 is the largest natural number: Let n be the largest natural number. Then n^{2}, being a natural number, is less than or equal to n. Therefore $n^{2}-n=n(n-1) \leq 0$. Hence $0 \leq n \leq 1$. Therefore $n=1$.
(b) Proof that $2=1$: Let $a=b$.

$$
\begin{array}{cc}
\Rightarrow & a^{2}=a b \\
\Rightarrow & a^{2}-b^{2}=a b-b^{2} \\
\Rightarrow & (a+b)(a-b)=b(a-b) \\
\Rightarrow & a+b=b
\end{array}
$$

Setting $a=b=1$, we get $2=1$.
(c) Proof that $(a+b)(a-b)=a^{2}-b^{2}$:

$$
\begin{array}{rlrl}
\text { To prove: } & \begin{aligned}
(a+b)(a-b) & =a^{2}-b^{2} \\
\Rightarrow & a^{2}-a b+a b-b^{2}
\end{aligned}=a^{2}-b^{2} \\
\Rightarrow & a^{2}-b^{2} & =a^{2}-b^{2}
\end{array}
$$

... which is true, hence the result is proved.
19. Prove that $7^{m}-1$ is divisible by 6 for all positive integers m.
20. Prove that

$$
\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}
$$

for all positive integers n.
21. Prove by induction that the sum of the interior angles of a convex ${ }^{1}$ polygon with n sides (and hence n vertices) is $180(n-2)$ degrees. You may use the fact that the sum of the interior angles of a triangle is 180 degrees. You do not need to prove straightforward geometrical facts rigorously (check with us if unsure).

[^0]22. Suppose that Alice sends the message a to Bob, encrypted using RSA. Suppose that Bob's implementation of RSA is buggy, and computes $k^{-1} \bmod 4 \phi(m)$ instead of $k^{-1} \bmod \phi(m)$. What decrypted message does Bob see? Justify your answer.
23. (a) What are the units of $\mathbb{Z} \bmod 12$?
(b) What are their inverses?
(c) What is $\phi(12)$?
24. (a) Let $[X \rightarrow Y]$ denote the set of all functions with domain X and codomain Y. Give a function f from $[X \rightarrow Y] \times[Y \rightarrow Z]$ to $[X \rightarrow Z]$.
(b) Is your function injective? Is it surjective? Is it bijective?
(c) Based on your function, what can you conclude about the relationship between the cardinality of $[X \rightarrow Y] \times[Y \rightarrow Z]$ and the cardinality of $[X \rightarrow Z]$?

[^0]: ${ }^{1}$ A polygon is convex if, for all vertices p and q of the polygon, the line joining p and q lies entirely within the polygon.

