
Probability
Life is full of uncertainty.
Probability is the best way we currently have to quantify it.

Applications of probability arise everywhere:
I Should you guess in a multiple-choice test with five choices?

I What if you’re not penalized for guessing?
I What if you’re penalized 1/4 for every wrong answer?
I What if you can eliminate two of the five possibilities?

I Suppose that an AIDS test guarantees 99% accuracy:
I of every 100 people who have AIDS, the test returns positive

99 times (very few false negative);
I of every 100 people who don’t have AIDS, the test returns

negative 99 times (very few false positives)
Suppose you test positive. How likely are you to have AIDS?

I Hint: the probability is not .99
I How do you compute the average-case running time of an

algorithm?
I Is it worth buying a $1 lottery ticket?

I Probability isn’t enough to answer this question

(I think) everybody ought to know something about probability.
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Interpreting Probability

Probability can be a subtle.

The first (philosophical) question is “What does probability
mean?”

I What does it mean to say that “The probability that the coin
landed (will land) heads is 1/2”?

Two standard interpretations:
I Probability is subjective: This is a subjective statement

describing an individual’s feeling about the coin landing heads
I This feeling can be quantified in terms of betting behavior

I Probability is an objective statement about frequency

Both interpretations lead to the same mathematical notion.
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Formalizing Probability

What do we assign probability to?
Intuitively, we assign them to possible events (things that might
happen, outcomes of an experiment)

Formally, we take a sample space to be a set.

I Intuitively, the sample space is the set of possible outcomes,
or possible ways the world could be.

An event is a subset of a sample space.

We assign probability to events: that is, to subsets of a sample
space.

Sometimes the hardest thing to do in a problem is to decide what
the sample space should be.

I There’s often more than one choice
I A good thing to do is to try to choose the sample space so

that all outcomes (i.e., elements) are equally likely
I This is not always possible or reasonable



Formalizing Probability

What do we assign probability to?
Intuitively, we assign them to possible events (things that might
happen, outcomes of an experiment)

Formally, we take a sample space to be a set.

I Intuitively, the sample space is the set of possible outcomes,
or possible ways the world could be.

An event is a subset of a sample space.

We assign probability to events: that is, to subsets of a sample
space.

Sometimes the hardest thing to do in a problem is to decide what
the sample space should be.

I There’s often more than one choice
I A good thing to do is to try to choose the sample space so

that all outcomes (i.e., elements) are equally likely
I This is not always possible or reasonable



Formalizing Probability

What do we assign probability to?
Intuitively, we assign them to possible events (things that might
happen, outcomes of an experiment)

Formally, we take a sample space to be a set.

I Intuitively, the sample space is the set of possible outcomes,
or possible ways the world could be.

An event is a subset of a sample space.

We assign probability to events: that is, to subsets of a sample
space.

Sometimes the hardest thing to do in a problem is to decide what
the sample space should be.

I There’s often more than one choice
I A good thing to do is to try to choose the sample space so

that all outcomes (i.e., elements) are equally likely
I This is not always possible or reasonable



Choosing the Sample Space
Example 1: We toss a coin. What’s the sample space?

I Most obvious choice: {heads, tails}
I Should we bother to model the possibility that the coin lands

on edge?
I What about the possibility that somebody snatches the coin

before it lands?
I What if the coin is biased?

Example 2: We toss a die. What’s the sample space?

Example 3: Two distinguishable dice are tossed together. What’s
the sample space?

I (1,1), (1,2), (1,3), . . . , (6,1), (6,2), . . . , (6,6)

What if the dice are indistinguishable?

Example 4: You’re a doctor examining a seriously ill patient,
trying to determine the probability that he has cancer. What’s the
sample space?

Example 5: You’re an insurance company trying to insure a
nuclear power plant. What’s the sample space?
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The text gives a systematic way of generating a sample space
that’s very useful in many cases; we’ll come back to that.



Probability Measures

A probability measure assigns a real number between 0 and 1 to
every subset of (event in) a sample space.

I Intuitively, the number measures how likely that event is.

I Probability 1 says it’s certain to happen; probability 0 says it’s
certain not to happen

I Probability acts like a weight or measure. The probability of
separate things (i.e., disjoint sets) adds up.



Formally, a probability measure Pr on S is a function mapping
subsets of S to real numbers such that:

1. For all A ⊆ S , we have 0 ≤ Pr(A) ≤ 1

2. Pr(∅) = 0; Pr(S) = 1

3. If A and B are disjoint subsets of S (i.e., A ∩ B = ∅), then
Pr(A ∪ B) = Pr(A) + Pr(B).

It follows by induction that if A1, . . . ,Ak are pairwise disjoint, then

Pr(∪ki=1Ai ) =
k∑
i

Pr(Ai ).

I This is called finite additivity; it’s actually more standard to
assume a countable version of this, called countable additivity

In particular, this means that if A = {e1, . . . , ek}, then

Pr(A) =
k∑

i=1

Pr(ei ).

In finite spaces, the probability of a set is determined by the
probability of its elements.



The text defines a probability measure on S to be a function
Pr : S → R such that

(a) Pr(s) ≥ 0 for all s ∈ S

(b)
∑

s∈S Pr(s) = 1.

I Notice that in the text’s definition, the domain of Pr is S , not
2S . They then define Pr(A) =

∑
s∈A Pr(s) for A ⊆ S .

I The text’s definition is equivalent to the one on the previous
slide if S is finite.

I The definition on the previous slide generalizes better to
infinite domains (e.g., to probability measures on [0, 1]).



Equiprobable Measures

Suppose S has n elements, and we want Pr to make each element
equally likely.

I Then each element gets probability 1/n

I Pr(A) = |A|/n

In this case, Pr is called an equiprobable or uniform measure.

I Not all probability measures are uniform!

Example 1: In the coin example, if you think the coin is fair, and
the only outcomes are heads and tails, then we can take
S = {heads,tails}, and
Pr(heads) = Pr(tails) = 1/2.

Example 2: In the two-dice example where the dice are
distinguishable, if you think both dice are fair, then we can take
Pr((i , j)) = 1/36.

I Should it make a difference if the dice are indistinguishable?
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Equiprobable measures on infinite sets

Defining an equiprobable measure on an infinite set can be tricky.

Theorem: There is no equiprobable measure on the positive
integers.

Proof: By contradiction. Suppose Pr is an equiprobable measure
on the positive integers, and Pr(1) = ε > 0.

There must be some N such that ε > 1/N.
Since Pr(1) = · · · = Pr(N) = ε, we have

Pr({1, . . . ,N}) = Nε > 1 — a contradiction

But if Pr(1) = 0, then Pr(S) = Pr(1) + Pr(2) + · · · = 0.



Some basic results

How are the probability of E and E related?

I How does the probability that the dice lands either 2 or 4
(i.e., E = {2, 4}) compare to the probability that the dice
lands 1, 3, 5, or 6 (E = {1, 3, 5, 6})

Theorem 1: Pr(E ) = 1− Pr(E ).

Proof: E and E are disjoint, so that

Pr(E ∪ E ) = Pr(E ) + Pr(E ).

But E ∪ E = S , so Pr(E ∪ E ) = 1.
Thus Pr(E ) + Pr(E ) = 1, so

Pr(E ) = 1− Pr(E ).



Theorem 2: Pr(A ∪ B) = Pr(A) + Pr(B)− Pr(A ∩ B).

A = (A− B) ∪ (A ∩ B)
B = (B − A) ∪ (A ∩ B)
A ∪ B = (A− B) ∪ (B − A) ∪ (A ∩ B)

So

Pr(A) = Pr(A− B) + Pr(A ∩ B)
Pr(B) = Pr(B − A) + Pr(A ∩ B)
Pr(A ∪ B) = Pr(A− B) + Pr(B − A) + Pr(A ∩ B)

The result now follows.

Remember the Inclusion-Exclusion Rule?

|A ∪ B| = |A|+ |B| − |A ∩ B|

This follows easily from Theorem 2, if we take Pr to be an
equiprobable measure. We can also generalize to arbitrary unions.
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Disclaimer

I Probability is a well defined mathematical theory.

I Applications of probability theory to “real world” problems is
not.

I Choosing the sample space, the events and the probability
function requires a “leap of faith”.

I We cannot prove that we chose the right model but we can
argue for that.

I Some examples are easy some are not:
I Flipping a coin or rolling a die.
I Playing a lottery game.
I Guessing in a multiple choice test.
I Determining whether or not the patient has AIDS based on a

test.
I Does the patient have cancer?



Conditional Probability
One of the most important features of probability is that there is a
natural way to update it.

Example: Bob draws a card from a 52-card deck. Initially, Alice
considers all cards equally likely, so her probability that the ace of
spades was drawn is 1/52. Her probability that the card drawn was
a spade is 1/4.

Then she sees that the card is black. What should her probability
now be that

I the card is the ace of spades?
I the card is a spade?

A reasonable approach:
I Start with the original sample space
I Eliminate all outcomes (elements) that you now consider

impossible, based on the observation (i.e., assign them
probability 0).

I Keep the relative probability of everything else the same.
I Renormalize to get the probabilities to sum to 1.
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What should the probability of B be, given that you’ve observed
A? According to this recipe, it’s

Pr(B | A) =
Pr(A ∩ B)

Pr(A)

Pr(A♠ | black) = (1/52)/(1/2) = 1/26
Pr(spade | black) = (1/4)/(1/2) = 1/2.

A subtlety:

I What if Alice doesn’t completely trust Bob? How do you take
this into account?

Two approaches:

(1) Enlarge sample space to allow more observations.
(2) Jeffrey’s rule:

Pr(A♠ | black) · Pr(Bob telling the truth)+
Pr(A♠ | red) · Pr(Bob lying).
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What do you condition on?
In general, figuring out what to condition on can be subtle.

I See Steve Strogatz’s article wonderful
article “Chances Are” in the NYTimes (also discussed in MCS):
opinionator.blogs.nytimes.com/2010/04/25/chances-are/? r=0

Example from the O.J. Simpson trial:
I The prosecution argued that OJ had a pattern of violent

behavior towards his wife
I E.g., he would slap her, throw her against walls

I The defense argued that all this was irrelevant
I Fewer than 1 out 2500 men who slap/beat their wives go on to

murder them.

Who was right?

Should we be interested in

(a) Pr(someone murdered his wife | he previously battered her).

(b) Pr(someone murdered his wife |
he previously battered her and she was murdered).

(c) neither.
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The second-ace puzzle
Alice gets two cards from a deck with four cards:
A♠, 2♠, A♥, 2♥.

A♠ A♥ A♠ 2♠ A♠ 2♥

A♥ 2♠ A♥ 2♥ 2♠ 2♥

The probability that Alice has both aces is 1/6.

Alice then tells Bob “I have an ace”.

I What’s the probability that Alice has both aces?

I What’s the probability that Alice has both aces? 1/5

She then says “I have the ace of spades”.

I Now what’s the probability that Alice has both aces?I Now what’s the probability that Alice has both aces? 1/3

What if Alice had said “I have the ace of hearts” instead?
I Also 1/3

But then why did Bob need Alice?
I Bob knows she has an ace. Whichever ace she has, the

probability that she has both aces is 1/3.
I So he knows it’s 1/3 even without Alice saying anything??!!
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Is the probability that Alice has both aces 1/3?

(a) Yes

(b) No

(c) I have no idea



The Monty Hall Puzzle

I You’re on a game show and given a choice of three doors.
I Behind one is a car; behind the others are goats.

I You pick door 1.

I Monty Hall opens door 2, which has a goat.

I He then asks you if you still want to take what’s behind door
1, or to take what’s behind door 3 instead.

Should you switch?



The Monty Hall Puzzle: Two Arguments
Here’s the argument for not switching:

I The car is equally likely to be behind each door. After you
learn it’s not behind door 2, you condition on that fact. Now
it’s still equally likely to be behind door 1 and door 3. There’s
no point in switching.

Here’s the argument for switching:
I With probability 1/3 you picked the door with a car; with

probability 2/3 you picked a door with a goat.
I If you picked the door with a car, you lose by switching: you

definitely get a goat.
I If you picked a door with with a goat, you win by switching;

the car is behind door 3 (the goats are behind door 1 and 2).

So it seems that switching gains with probability 2/3.

Which argument is right?

I If you think it’s 2/3, what’s wrong with conditioning?
I Do we condition only in some cases and not in others?
I If so, when?
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Which argument is right?

(a) 2/3
(b) 1/2
(c) both
(d) neither

I If you think it’s 2/3, what’s wrong with conditioning?
I Do we condition only in some cases and not in others?
I If so, when?
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The Protocol Matters

Conditioning is always the right thing to do, but you have to use
the right sample space to get the result.

I The right sample space includes the protocol!

For the second-ace puzzle, suppose Alice’s protocol says that at
the first step, she’ll tell Bob whether she has an ace. At the second
step, she’ll tell Bob which ace she has.

I But what does she do if she both aces? Which ace does she
tell Bob about?

I Protocol #1: she says “ace of hearts” whenever she has a
choice.

I In that case, the probability that she has both aces if she says
“ace of spades is 0, not 1/3!

I the probability that she has both aces if she says “ace of
hearts” is 1/3.



I Possibility #2: she randomizes when she has a choice (says
“Ace of hearts” with probability 1/2 and “ace of spades” with
probabiility 1/2).

I Now the sample space has to include how Alice’s coin that
determines what she says in this case landed.

I There are 7 elements in the sample space, not 6!

An easy calculation (done in class) shows that the probability
that she has both aces if she says “ace of spades” is 1/5, not
1/3.



Back to Monty Hall
Again, what Monty does is determined if the there’s a goat behind
door 1

I He opens the other door that has a goat behind it

I Assuming that he necessarily opens a door—see below.

But which door does Monty open if door 1 has a car?

I if he definitely opens door 2, then switching doesn’t help.

I if he randomizes between door 2 and door 3, then you gain by
switching. Here’s the calculation:

I The probability space has four elements: (C 1,D2) (the car is
behind door 1 and he opens door 2), (C 1,D3), (C 2,D3), and
(C 3,D2).

I The first two each have probability 1/6; the last two each
have probbility 1/3.

I An easy calculation shows that Pr(C1 | D2) = 1/3 and
Pr(C3 | D2) = 2/3, so you gain by switching

But what if Monty’s protocol is to open door 2 only if door 1 has
the car behind it?

I Then switching is a terrible idea!
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Using Protocols to Generate Tree Diagrams

We can use protocols to generate a tree diagram or probability tree
that determines the sample space.

I Each non-leaf node in the tree corresponds to an uncertain
choice.

I The edges leading from that node correspond to ways of
resolving the uncertainty.

I The edges are labeled by the probability of making that choice.



Consider Monty Hall.
I The first choice is where the car is.

I There are three possibilities: door A, B, or C.
I By assumption, these are all equally likely.

B : 1/3

A : 1/3

C : 1/3

I Next you point to a door, again with uniform probability
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A : 1/3
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Finally, Monty opens a door (choosing at random when he has a
choice):

B : 1/3

A : 1/3

C : 1/3

B : 1/3

A : 1/3

C : 1/3

B : 1/3

A : 1/3

C : 1/3

A : 1/3

B : 1/3

C : 1/3

A : 1

B : 1

A : 1

A : .5

B : .5

C : .5

A : .5

C : 1

B : 1

C : 1
C : .5

B : .5

car location your guess Monty’s choice

I Each path in the tree defines an outcome (an element of the
sample space)

I The probability of the outcome is the product of the
probabilities on the edges of the path



Probability Trees

Probability trees are useful for describing sequential decision,
randomized algorithms, . . .

One more example:

Suppose that the probability of rain tomorrow is .7. If it rains, then
the probability that the game will be cancelled is .8; if it doesn’t
rain, then the probability that it will be cancelled is .1. What is the
probability that the game will be played?

The situation can be described by a tree:
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Probability Trees
Probability trees are useful for describing sequential decision,
randomized algorithms, . . .

One more example:

Suppose that the probability of rain tomorrow is .7. If it rains, then
the probability that the game will be cancelled is .8; if it doesn’t
rain, then the probability that it will be cancelled is .1. What is the
probability that the game will be played?

The situation can be described by a tree:

rain: .7

no rain: .3

no game: .8

game: .2

game: .9

no game: .1



Why Does This Work?

Probability trees provide a great systematic way to generate a
probability space.

But why do they work?

I Why is the probability of a path the product of the probability
of the edges?

I Going back to the Monty Hall tree, the path C ; C ; B is the
outcome where the car is behind door C , you chose door C ,
and Monty opened door B.

I But what does it mean that the bottom-most edge is labeled
“B : .5”?

I Exactly what probability is it that’s .5?
I Is it the probability of Monty opening door B?

This is a conditional probability!

I The probability that Monty opens door B given that the car is
behind door C and you pointed to door C
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Observe that Pr(A1 ∩ A2) = Pr(A1 | A2)× Pr(A2).
Taking X ; Y ; Z to denote the path were the car is behind door X ,
you point to door Y , and Monty opens door Z , we have

Pr(A; C ; B) = Pr(A; C )× Pr(B | A; C )
= Pr(A; C )× 1/2
= Pr(A | C )× Pr(C )× 1/2
= 1/3× 1/3× 1/2

That’s why the probability of a path is the product of the edge
probabilities.

More generally,
Pr(A1 ∩ A2 ∩ A3) = Pr(A1) Pr(A2|A1) Pr(A3|A1 ∩ A2).

There’s an obvious generalization to Pr(A1 ∩ . . . ∩ An).
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Independence
Intuitively, events A and B are independent if they have no effect
on each other.

This means that observing A should have no effect on the
likelihood we ascribe to B, and similarly, observing B should have
no effect on the likelihood we ascribe to A.

Thus, if Pr(A) 6= 0 and Pr(B) 6= 0 and A is independent of B, we
would expect

Pr(B|A) = Pr(B) and Pr(A|B) = Pr(A).

Interestingly, one implies the other.

Pr(B|A) = Pr(B) iff Pr(A ∩ B)/Pr(A) = Pr(B) iff

Pr(A ∩ B) = Pr(A)× Pr(B).

Formally, we say A and B are (probabilistically) independent if

Pr(A ∩ B) = Pr(A)× Pr(B).

This definition makes sense even if Pr(A) = 0 or Pr(B) = 0.
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Mutual vs. Pairwise Independence

What should it mean for 4 events A1, . . . ,A4 to be independent?

I pairwise independence: Ai is independent of Aj for i 6= j
I mutual independence:

I Ai is independent of Aj for i 6= j (pairwise independence)
I 3-way independence:

I Pr(A1 ∩ A2 ∩ A3) = Pr(A1) Pr(A2) Pr(A3)
I Pr(A1 ∩ A2 ∩ A4) = Pr(A1) Pr(A2) Pr(A4)
I Pr(A1 ∩ A3 ∩ A4) = Pr(A1) Pr(A3) Pr(A4)
I Pr(A2 ∩ A3 ∩ A4) = Pr(A2) Pr(A3) Pr(A4)

I 4-way independence:

I Pr(A1 ∩ A2 ∩ A3 ∩ A4) = Pr(A1) Pr(A2) Pr(A3) Pr(A4)



Mutual independence obviously requires much more than just
pairwise independence.
Example: Suppose A and B are 0 or 1 with probability 1/2, and
C = A⊕ B.

I Then we have pairwise independence but not mutual
independence

I E.g., knowing A tells you nothing about either B or C

I However, they’re not mutually independent
I Knowing A and B determines C !

I (This fact is used in cryptographic protocols.)

This issue also arises in legal cases . . .



Example: DNA Testing
In a jury trial, you hear things like “We did DNA testing and found
a match. The probability of such a match is 1 in 170 million.”

I Where did those numbers come from?

Genes have markers. Suppose we have statistics like
I 1 person in 100 has marker A
I 1 person in 50 has marker B
I 1 person in 40 has marker C
I 1 person in 5 has marker D
I 1 person in 170 has marker E

The witness has all five markers, and so does the blood sample at
the crime scene. What’s the probability of this happening?

If we assume that the markers are mutually independent, then the
probability of a match is

1

100
× 1

50
× 1

40
× 1

5
× 1

170
≈ 1

170, 000, 000
.

But is mutual independence a reasonable assumption?

What if they’re only pairwise independent?
I E.g., if you have markers A and B, you’re likely to C too

What if they weren’t independent at all?

Independence, pairwise independence, and mutual indepedence are
typically assumptions made based on our understanding of the
science, and not from the data. We need to think about how
reasonable they are in practice . . .
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What can you conclude in that case?

(a) Nothing
(b) The probability of a match is still 1 in 170,000,000
(c) The probability of a match could be as high as 1 in 17,000
(d) The probability of a match could be as high as 1 in 200
(e) No idea

What if they weren’t independent at all?
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typically assumptions made based on our understanding of the
science, and not from the data. We need to think about how
reasonable they are in practice . . .
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This issue arose in a real-life court case:

On 24 March 2003, Lucia De Berk, a Dutch nurse,
was sentenced by the court in The Hague to life
imprisonment for the murder of four patients and the
attempted murder of three others. The verdict depended
in part on a statistical calculation, according to which the
probability was allegedly only 1 in 342 million that a
nurse’s shifts would coincide with so many of the deaths
and resuscitations purely by chance.

I Statisticians said the the probabilistic reasoning that led to
the conviction was seriously flawed

I Case was reheard, and de Berk declared not guilty in 2010
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Bayes’ Theorem
Suppose that you have a barrel-full of coins. One coin in the barrel
is double-headed; all the rest are fair. You draw a coin from the
barrel at random, and toss it 10 times. It lands heads each time.
What’s the probability that it’s double headed?

(a) 1/210

(b) I have no idea

The right answer is (b). What else do you need to know to figure
out the true probability?
Suppose we have a test that is 99% effective against AIDS.

I The probability of a false positive—the test is positive
although you don’t have AIDS—is 1%.

I The probability of a false negative—the test is negative
although you have AIDS—is 1%.

Suppose that you test positive. What’s the probability that you
have AIDS?

(a) .99

(b) it depends . . .
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The Law of Total Probability
The first step in addressing this formally is the law of total
probability:

Pr(A) = Pr(A | E ) Pr(E ) + Pr(A | E ) Pr(E ).

Why is this true?

Pr(A) = Pr(A ∩ E ) + Pr(A ∩ E )

= Pr(A | E ) Pr(E ) Pr(A | E ) Pr(E ).

Example: You first toss a fair coin. If it comes up heads, you roll
a fair die and win if it comes up 1 or 2. If it comes up tails, you
roll the die and win if it comes up 3. What’s the probability of
winning?

You could easily draw the probability tree and heck. But let’s use
the law of total probability:

Pr(win) = Pr(win | heads) Pr(heads) Pr(win | tails) Pr(tails)
= 1/3× 1/2 + 1/6× 1/2.
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Generalized law of total probability

If E1, . . . ,En are pairwise disjoint (Ei ∩ Ej = ∅ for all i , j), then

Pr(A) = Pr(A | E1) Pr(E1) + · · ·Pr(A | En) Pr(En).



Bayes’ Theorem
Bayes Theorem: Let A1, . . . ,An be mutually exclusive and
exhaustive events in a sample space S .

I That means A1 ∪ . . . ∪ An = S , and the Ai ’s are pairwise
disjoint: Ai ∩ Aj = ∅ if i 6= j .

Let B be any other event in S . Then

Pr(Ai | B) =
Pr(Ai ) Pr(B|Ai )∑n
j=1 Pr(Aj) Pr(B|Aj)

.

Proof: Pr(Ai | B) = Pr(Ai∩B)
Pr(B) .

We have seen that Pr(Ai ∩ B) = Pr(Ai | B) Pr(B).

By the (generalized) law of total probability:

Pr(B) =
n∑

j=1

Pr(B | Aj) Pr(Aj).
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Example
In a certain county, 60% of registered voters are Republicans, 30%
are Democrats, and 10% are Independents. 40% of Republicans
oppose increased military spending, while 65% of the Democrats
and 55% of the Independents oppose it. A registered voter writes a
letter to the county paper, arguing against increased military
spending. What is the probability that this voter is a Democrat?

S = {registered voters}
A1 = {registered Republicans}
A2 = {registered Democrats}
A3 = {registered independents}
B = {voters who oppose increased military spending}

We want to know Pr(A2|B).

We have

Pr(A1) = .6 Pr(A2) = .3 Pr(A3) = .1
Pr(B|A1) = .4 Pr(B|A2) = .65 Pr(B|A3) = .55



Using Bayes’ Theorem, we have:

Pr(A2|B) = Pr(B|A2)×Pr(A2)
Pr(B|A1)×Pr(A1)+Pr(B|A2)×Pr(A2)+Pr(B|A3)×Pr(A3)

= .65×.3
(.4×.6)+(.65×.3)+(.55×.1)

= .195
.49

≈ .398



AIDS
Suppose we have a test that is 99% effective against AIDS.
Suppose we also know that .3% of the population has AIDS. What
is the probability that you have AIDS if you test positive?

S = {all people} (in North America??)
A1 = {people with AIDS}
A2 = {people who don’t have AIDS} (A2 = A1)
B = {people who test positive}

Pr(A1) = .003 Pr(A2) = .997

Since the test is 99% effective:

Pr(B|A1) = .99 Pr(B|A2) = .01

Using Bayes’ Theorem again:

Pr(A1|B) = .99×.003
(.99×.003)+(.01×.997)

≈ .003
.003+.01

≈ .23



Averaging and Expectation

Suppose you toss a coin that’s biased towards heads
(Pr(heads) = 2/3) twice. How many heads do you expect to get?

I In mathematics-speak:
What’s the expected number of heads?

What about if you toss the coin k times?

What’s the average weight of the people in this classroom?

I That’s easy: add the weights and divide by the number of
people in the class.

But what about if I tell you I’m going to toss a coin to determine
which person in the class I’m going to choose; if it lands heads, I’ll
choose someone at random from the first aisle, and otherwise I’ll
choose someone at random from the last aisle.

I What’s the expected weight?

Averaging makes sense if you use a uniform distribution; in general,
we need to talk about expectation.



Random Variables
To deal with expectation, we formally associate with every element
of a sample space a real number.

Definition: A random variable on sample space S is a function
from S to some codomain,usually the real numbers.

I It’s not random and it’s not a variable!

Example: Suppose we toss a biased coin (Pr(h) = 2/3) twice.
The sample space is:

I hh - Probability 4/9
I ht - Probability 2/9
I th - Probability 2/9
I tt - Probability 1/9

If we’re interested in the number of heads, we would consider a
random variable #H that counts the number of heads in each
sequence:

#H(hh) = 2; #H(ht) = #H(th) = 1; #H(tt) = 0



Example: If we’re interested in weights of people in the class, the
sample space is people in the class, and we could have a random
variable that associates with each person his or her weight.
Important Example: An indicator or binary random variable maps
every element of the sample space to either 0 or 1.

I Given a subset A ⊆ S , the indicator random variable IA maps
s ∈ A to 1 and s /∈ A to 0

Indicator random variables turn out to be quite useful. (More
examples coming.)



Random Variables and Events

Given a real-valued random variable X whose domain is a sample
space S , and ral number c, X = c is an event: a subset of S .

I Which event is it?

X = c is the event {s ∈ S : X (s) = c}

Similarly, X ≤ c is the event {x ∈ S : X (s) ≥ c}.
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Probability Distributions

If X is a real-valued random variable on sample space S , then the
probability that X takes on the value c is

Pr(X = c) = Pr({s ∈ S | X (s) = c})

Similarly,
Pr(X ≤ c) = Pr({s ∈ S | X (s) ≤ c}).

I Pr(X ≤ c) makes sense since X ≤ c is an event (a sbset of S)
I We can talk about the probability only of events

I {s ∈ S | X (s) ≤ c} makes sense because X is a function
whose range is the real numbers.

Example: In the coin example,

Pr(#H = 2) = 4/9 and Pr(#H ≤ 1) = 5/9
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Given a probability measure Pr on a sample space S and a random
variable X , the probability distribution associated with X is
PDFX (x) = Pr(X = x).

I PDFX is a probability measure on the real numbers.

The cumulative distribution associated with X is
CDFX (x) = Pr(X ≤ x).



An Example With Dice
Suppose S is the sample space corresponding to tossing a pair of
fair dice: {(i , j) | 1 ≤ i , j ≤ 6}.
Let X be the random variable that gives the sum:

I X (i , j) = i + j

PDFX (2) = Pr(X = 2) = Pr({(1, 1)}) = 1/36
PDFX (3) = Pr(X = 3) = Pr({(1, 2), (2, 1)}) = 2/36
...
PDFX (7) = Pr(X = 7) = Pr({(1, 6), (2, 5), . . . , (6, 1)}) = 6/36
...
PDFX (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36

Can similarly compute the cumulative distribution:

CDFX (2) = PDFX (2) = 1/36
CDFX (3) = PDFX (2) + PDFX (3) = 3/36
...
CDFX (12) = 1
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The Finite Uniform Distribution

The finite uniform distribution is an equiprobable distribution. If
S = {x1, . . . , xn}, where x1 < x2 < . . . < xn, then:

f (xk) = 1/n

F (xk) = k/n



The Binomial Distribution

Suppose there is an experiment with probability p of success and
thus probability q = 1− p of failure.

I For example, consider tossing a biased coin, where Pr(h) = p.
Getting “heads” is success, and getting tails is failure.

Suppose the experiment is repeated independently n times.

I For example, the coin is tossed n times.

This is called a sequence of Bernoulli trials.

Key features:

I Only two possibilities: success or failure.

I Probability of success does not change from trial to trial.

I The trials are independent.



What is the probability of k successes in n trials?

Suppose n = 5 and k = 3. How many sequences of 5 coin tosses
have exactly three heads?

I hhhtt
I hhtht
I hhtth

...

C (5, 3) such sequences!

What is the probability of each one?

p3(1− p)2

Therefore, probability is C (5, 3)p3(1− p)2.

Let Bn,p(k) be the probability of getting k successes in n Bernoulli
trials with probability p of success.

Bn,p(k) = C (n, k)pk(1− p)n−k

Not surprisingly, Bn,p is called the Binomal Distribution.



New Distributions from Old

If X and Y are random variables on a sample space S , so is
X + Y , X + 2Y , XY , sin(X ), etc.

For example,

I (X + Y )(s) = X (s) + Y (s).

I sin(X )(s) = sin(X (s))

Note sin(X ) is a random variable: a function from the sample
space to the reals.



Some Examples
Example 1: A fair die is rolled. Let X denote the number that
shows up. What is the probability distribution of Y = X 2?

{s : Y (s) = k} = {s : X 2(s) = k}
= {s : X (s) = −

√
k} ∪ {s : X (s) =

√
k}.

Conclusion: PDFY (k) = PDFX (
√

k) + PDFX (−
√

k).
So PDFY (1) = PDFY (4) = PDFY (9)) = · · ·PDFY (36) = 1/6.
PDFY (k) = 0 if k /∈ {1, 4, 9, 16, 25, 36}.

Example 2: A coin is flipped. Let X be 1 if the coin shows H and
-1 if T . Let Y = X 2.

I In this case Y ≡ 1, so Pr(Y = 1) = 1.

Example 3: If two dice are rolled, let X be the number that
comes up on the first dice, and Y the number that comes up on
the second.

I Formally, X ((i , j)) = i , Y ((i , j)) = j .

The random variable X + Y is the total number showing.
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Example 4: Suppose we toss a biased coin n times (more
generally, we perform n Bernoulli trials). Let Xk describe the
outcome of the kth coin toss: Xk = 1 if the kth coin toss is heads,
and 0 otherwise.

I Xk is an indicator random variable.

How do we formalize this?

I What’s the sample space?

Notice that
∑n

k=1 Xk describes the number of successes of n
Bernoulli trials.

I If the probability of a single success is p, then
∑n

k=1 Xk has
distribution Bn,p

I The binomial distribution is the sum of Bernoullis
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Independent random variables

In a roll of two dice, let X and Y record the numbers on the first
and second die respectively.

I What can you say about the events X = 3, Y = 2?

I What about X = i and Y = j?

Definition: The random variables X and Y are independent if for
every x and y the events X = x and Y = y are independent.

Example: X and Y above are independent.

Definition: The random variables X1,X2, . . . ,Xn are mutually
independent if, for every x1, x2 . . . , xn

Pr(X1 = x1, . . . ,Xn = xn) = Pr(X1 = x1) . . .Pr(Xn = xn)

Example: Xk , the success indicators in n Bernoulli trials, are
independent.
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Expected Value
Suppose we toss a biased coin, with Pr(h) = 2/3. If the coin lands
heads, you get $1; if the coin lands tails, you get $3. What are
your expected winnings?

I 2/3 of the time you get $1;
1/3 of the time you get $3

I (2/3× 1) + (1/3× 3) = 5/3

What’s a good way to think about this? We have a random
variable W (for winnings):

I W (h) = 1
I W (t) = 3

The expectation of W is

E (W ) = Pr(h)W (h) + Pr(t)W (t)
= Pr(W = 1)× 1 + Pr(W = 3)× 3

More generally, the expected value of random variable X on
sample space S is

E (X ) =
∑
x

x Pr(X = x)



Expected Value
Suppose we toss a biased coin, with Pr(h) = 2/3. If the coin lands
heads, you get $1; if the coin lands tails, you get $3. What are
your expected winnings?

I 2/3 of the time you get $1;
1/3 of the time you get $3

I (2/3× 1) + (1/3× 3) = 5/3

What’s a good way to think about this? We have a random
variable W (for winnings):

I W (h) = 1
I W (t) = 3

The expectation of W is

E (W ) = Pr(h)W (h) + Pr(t)W (t)
= Pr(W = 1)× 1 + Pr(W = 3)× 3

More generally, the expected value of random variable X on
sample space S is

E (X ) =
∑
x

x Pr(X = x)



Example: What is the expected count when two dice are rolled?

Let X be the count:

E (X )

=
∑12

i=2 i Pr(X = i)
= 2 1

36 + 3 2
36 + 4 3

36 + · · ·+ 7 6
36 + · · ·+ 12 1

36
= 252

36
= 7



An Alternative Definition of Expectation

We defined E (X ) =
∑

x x Pr(X = x).

Let E ′(X ) =
∑

s∈S X (s) Pr(s).

The two definitions are equivalent:

Theorem: E (X ) = E ′(X )

Proof:

E ′(X ) =
∑

s∈S X (s) Pr(s)
=
∑

x

∑
{s∈S :X (s)=x} X (s) Pr(s) [partition the sum by x ]

=
∑

x

∑
{s∈S :X (s)=x} x Pr(s)

=
∑

x x
∑
{s∈S :X (s)=x} Pr(s) [x a constant]

=
∑

x x Pr({s : X (s) = x})
=
∑

x x Pr({X = x}) [by definition, X = x
is the event {s : X (s) = x}]

= E (X )



An Alternative Definition of Expectation

We defined E (X ) =
∑

x x Pr(X = x).

Let E ′(X ) =
∑

s∈S X (s) Pr(s).

The two definitions are equivalent:

Theorem: E (X ) = E ′(X )

Proof:

E ′(X ) =
∑

s∈S X (s) Pr(s)
=
∑

x

∑
{s∈S :X (s)=x} X (s) Pr(s) [partition the sum by x ]

=
∑

x

∑
{s∈S :X (s)=x} x Pr(s)

=
∑

x x
∑
{s∈S :X (s)=x} Pr(s) [x a constant]

=
∑

x x Pr({s : X (s) = x})
=
∑

x x Pr({X = x}) [by definition, X = x
is the event {s : X (s) = x}]

= E (X )



Expectation of Indicator Variables

What is the expected value of the indicator variable IA? Recall

IA(x) =

{
1 if x ∈ A
0 if x /∈ A

Thus,

E (IA) = 1 Pr(IA = 1) + 0 Pr(IA = 0) = Pr(A)

I Since {s : IA(s) = 1} = A.



Expectation of Binomials
What is E (Bn,p), the expectation for the binomial distribution Bn,p

I How many heads do you expect to get after n tosses of a
biased coin with Pr(h) = p?

Method 1: Use the definition and crank it out:

E (Bn,p) =
n∑

k=0

k

(
n

k

)
pk(1− p)n−k

This looks awful, but it can be calculated ...

Method 2: Use Induction; break it up into what happens on the
first toss and on the later tosses.

I On the first toss you get heads with probability p and tails
with probability 1− p. On the last n − 1 tosses, you expect
E (Bn−1,p) heads. Thus, the expected number of heads is:

E (Bn,p) = p(1 + E (Bn−1,p)) + (1− p)(E (Bn−1,p))
= p + E (Bn−1,p)

E (B1,p) = p

Now an easy induction shows that E (Bn,p) = np.

There’s an even easier way . . .
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Expectation is Linear
Theorem: E (X + Y ) = E (X ) + E (Y )

Proof: Recall that

E (X ) =
∑
s∈S

Pr(s)X (s)

Thus,

E (X + Y ) =
∑

s∈S Pr(s)(X + Y )(s)
=
∑

s∈S Pr(s)X (s) +
∑

s∈S Pr(s)Y (s)
= E (X ) + E (Y ).

This is true even if X and Y aren’t independent!

Theorem: E (aX ) = aE (X )

Proof:

E (aX ) =
∑
s∈S

Pr(s)(aX )(s) = a
∑
s∈S

X (s) = aE (X ).
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Example 1: Back to the expected value of tossing two dice:
Let X1 be the count on the first die, X2 the count on the second
die, and let X be the total count.

Notice that

E (X1) = E (X2) = (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5

E (X ) = E (X1 + X2) = E (X1) + E (X2) = 3.5 + 3.5 = 7

Example 2: Back to the expected value of Bn,p.

Let X be the total number of successes and let Xk be the outcome
of the kth experiment, k = 1, . . . , n:

E (Xk) = p · 1 + (1− p) · 0 = p

X = X1 + · · ·+ Xn

Therefore
E (X ) = E (X1) + · · ·+ E (Xn) = np.
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Conditional Expectation

E (X | A) is the conditional expectation of X given A.

E (X | A) =
∑

x x Pr(X = x | A)
=
∑

x x Pr(X = x ∩ A)/Pr(A)

Theorem: For all events A such that Pr(A),Pr(A) > 0:

E (X ) = E (X | A) Pr(A) + E (X | A) Pr(A)

Proof:

E (X )
=

∑
x x Pr(X = x)

=
∑

x x(Pr((X = x) ∩ A) + Pr((X = x) ∩ A))

=
∑

x x(Pr(X = x | A) Pr(A) + Pr(X = x | A) Pr(A))

=
∑

x(x Pr(X = x | A) Pr(A)) + (x Pr(X = x | A) Pr(A))

= E (X | A) Pr(A) + E (X | A) Pr(A)
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Example: I toss a fair die. If it lands with 3 or more, I toss a coin
with bias p1 (towards heads). If it lands with less than 3, I toss a
coin with bias p2. What is the expected number of heads?

Let A be the event that the die lands with 3 or more.

Pr(A) = 2/3

E (#H) = E (#H | A) Pr(A) + E (#H | A) Pr(A)
= p1

2
3 + p2

1
3



The Power of Randomization

Suppose we play the following game:

I Step 1: We have two envelopes. I put different integers
between 0 and 100 in each one.

I Step 2: An envelope is chosen at random and the number
inside is revealed.

I Step 3: You choose an envelope. You win if you choose the
envelope with the larger number.

If you just choose an envelope at random (ignoring what you saw
at step 2), you will win with probability 1/2.

I Can you do better (assuming that I know your strategy)?

(a) Yes
(b) No
(c) ??



A potentially better strategy

Here’s a strategy:

I Fix a number between 0 and 100; e.g., 60.

I If the number in the envelope that you see is ≥ 60, stick with
that envelope; otherwise switch.

Call this strategy S(60): stick with 60

I Can similarly define S(k) for 1 ≤ k ≤ 100



Analysis of S(60)
Recall that with S(60), you stick with the opened envelope if you
see a number ≥ 60; otherwise you switch.

I Case A: If the numbers in both envelopes are ≥ 60, you win
with probability 1/2.

I whichever envelope you open, you’ll stick with it.
I Pr(You open the envelope with the bigger number) = 1/2.

I Case B: If the numbers in both envelopes are < 60, you win
with probability 1/2.

I whichever envelope you open, you’ll switch.
I Pr(You open the envelope with the smaller number) = 1/2.

I Case C: If the number in one envelope is < 60 and the
number in the other one is ≥ 60, you’re guaranteed to win!

I if you open the envelope with the bigger number, you stick
with it (it’s ≥ 60); if you open the envelope with the smaller
number, you switch.

Thus, the expected probability that you’ll win is

1/2 Pr(A) + 1/2 Pr(B) + Pr(C )
= 1/2(Pr(A) + Pr(B) + Pr(C )) + 1/2 Pr(C )
= 1/2 + 1/2 Pr(C ) [since Pr(A) + Pr(B) + Pr(C ) = 1]



You win with probability = 1/2 iff Pr(C ) = 0:

I i.e., if I never put numbers in the envelope where one is ≥ 60
and the other is < 60.

So how can you ensure that you win?

Note that S(k) will win with probablity > 1/2 as long as I put a
number ≥ k in one envelope and a number < k in the other with
positive probability.

I I can beat any strategy S(k), but I can’t beat them all.
I If you choose k between 1 and 100 at random (i.e., with

probaility 1/100) and play S(k), you’re guaranteed to win with
probability > 1/2!

You win by randomizing!



A CS Application: Primality Testing

Key number theory result: There is an easily computable
(deterministic) test T (b, n) such that

I T (b, n) = 1 (for all b) if n is prime.
I There are lots of bs for which T (b, n) = 0 if n is not prime.

I In fact, for at least 1/3 of the the bs between 1 and n,
T (b, n) = 0 if n is composite.

So heres a primality-testing algorithm:

Input n [the number you want to test for primality]
For k from 1 to 100 do

Choose b at random between 1 and n
If T (b, n) = 0 return “n is not prime”

EndFor
return “n is prime”



Probabilistic Primality Testing: Analysis

If n is composite, what is the probability that algorithm returns “n
is prime”:

(2/3)100 < (.2)25 = 10−70

I I wouldnt lose sleep over mistakes!

If 10−70 is unacceptable, try 200 random choices.

How long will it take until we find a witness?

I Expected number of steps is ≤ 3

What is the probability that it takes k steps to find a witness?

I (2/3)k−1(1/3)

I That’s the probability of not finding a witness for the first
k − 1 steps ((2/3)k−1) then finding a witness the kth step
(1/3)

Bottom line: the algorithm is extremely fast and almost certainly
gives the right results
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Deviation from the Mean
Expectation summarizes a lot of information about a random
variable as a single number. But no single number can tell it all.

Compare these two distributions:

I Distribution 1:

Pr(49) = Pr(51) = 1/4; Pr(50) = 1/2.

I Distribution 2: Pr(0) = Pr(50) = Pr(100) = 1/3.

Both have the same expectation: 50. But the first is much less
“dispersed” than the second. We want a measure of dispersion.

I One measure of dispersion is how far things are from the
mean, on average.

Given a random variable X , (X (s)− E (X ))2 measures how far the
value of s is from the mean value (the expectation) of X . Define
the variance of X to be

Var(X ) = E ((X − E (X ))2) =
∑
s∈S

Pr(s)(X (s)− E (X ))2



Standard Deviation

The standard deviation of X is

σX =
√

Var(X ) =

√∑
s∈S

Pr(s)(X (s)− E (X ))2



Why not use |X (s)− E (X )| as the measure of distance instead of
variance?

I (X (s)− E (X ))2 turns out to have nicer mathematical
properties.

I In Rn, the distance between (x1, . . . , xn) and (y1, . . . , yn) is√
(x1 − y1)2 + · · ·+ (xn − yn)2

Example:

I The variance of distribution 1 is

1

4
(51− 50)2 +

1

2
(50− 50)2 +

1

4
(49− 50)2 =

1

2

I The variance of distribution 2 is

1

3
(100− 50)2 +

1

3
(50− 50)2 +

1

3
(0− 50)2 =

5000

3

Expectation and variance are two ways of compactly describing a
distribution.

I They don’t completely describe the distribution

I But they’re still useful!
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Variance: Examples
Let X be Bernoulli, with probability p of success. E (X ) = p, so

Var(X ) = (0− p)2 · (1− p) + (1− p)2 · p
= p(1− p)[p + (1− p)]
= p(1− p)

Theorem: Var(X ) = E (X 2)− E (X )2.

Proof:

E ((X − E (X ))2) = E (X 2 − 2E (X )X + E (X )2)
= E (X 2)− 2E (X )E (X ) + E (E (X )2)
= E (X 2)− 2E (X )2 + E (X )2

= E (X 2)− E (X )2

Example: Suppose X is the outcome of a roll of a fair die.

I Recall E (X ) = 7/2.

I E (X 2) = 12 · 16 + 22 · 16 + · · ·+ 62 · 16 = 91
6

I So Var(X ) = 91
6 −

(
7
2

)2
= 35

12 .
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Markov’s Inequality
How likely is it that things are far from the mean? Markov’s
inequality gives one estimate:

Theorem: Suppose that X is a nonnegative random variable and
α > 0. Then Pr(X ≥ α) ≤ E(X )

α .

Proof:

E (X ) =
∑

x x · Pr(X = x)
≥

∑
x≥α x · Pr(X = x) [X is nonnegative]

≥
∑

x≥α α · Pr(X = x)

= α
∑

x≥α Pr(X = x)

= α · Pr(X ≥ α)

Example: If X is B100,1/2, then

Pr(X ≥ 100) ≤ 50/100 = 1/2.

This is not a particularly useful estimate. In fact,
Pr(X ≥ 100) = 2−100 ∼ 10−30.
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Chebyshev’s Inequality

Theorem: If X is a random variable and β > 0, then

Pr(|X − E (X )| ≥ β) ≤ Var(X )

β2
.

Proof: Let Y = (X − E (X ))2. Then

|X − E (X )| ≥ β iff Y ≥ β2.

That is, {s : |X (s)− E (X )| ≥ β} = {s : Y (s) ≥ β2}.
Thus

Pr(|X − E (X )| ≥ β) = Pr(Y ≥ β2).

Since Y ≥ 0, by Markov’s inequality,

Pr(Y ≥ β2) ≤ E (Y )

β2
.

Finally, note that E (Y ) = E [(X − E (X ))2] = Var(X ).



I Statement equivalent to Chebyshev’s inequality:

Pr(|X − E (X )| ≥ βσX ) ≤ 1

β2
.

I Intuitively, the probability of a random variable being k
standard deviations from the mean is ≤ 1/k2.

I Chebyshev’s inequality gives a better estimate of how far
things are from the mean than Markov’s inequality, although
Markov’s inequality is used to prove it.

I If we have more information, we can do even better.
I See the discussion of Chernoff bounds in the text



Chebyshev’s Inequality: Example

Chebyshev’s inequality gives a lower bound on how well X is
concentrated about its mean.

I Suppose that X is B100,1/2 and we want a lower bound on
Pr(40 < X < 60).

I E (X ) = 50 and 40 < X < 60 iff |X − 50| < 10 so

Pr(40 < X < 60) = Pr(|X − 50| < 10)
= 1− Pr(|X − 50| ≥ 10).

Now
Pr(|X − 50| ≥ 10) ≤ Var(X )

102

= 100·(1/2)2
100

= 1
4 .

So Pr(40 < X < 60) ≥ 1− 1/4 = 3/4.

This is not too bad: the correct answer is ∼ 0.9611.


