
Combinatorics

Problem: How to count without counting.

I How do you figure out how many things there are with a
certain property without actually enumerating all of them.

Sometimes this requires a lot of cleverness and deep mathematical
insights.

But there are some standard techniques.

I That’s what we’ll be studying.



Bijection Rule

The Bijection Rule: If f : A→ B is a bijection, then |A| = |B|.
I We used this rule in defining cardinality for infinite sets.

I Now we’ll focus on finite sets.

We sometimes use the bijection rule without even realizing it:

I count how many people voted are in favor of something by
counting the number of hands raised:

I I’m hoping that there’s a bijection between the people in favor
and the hands raised!
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Sum and Product Rules

Example 1: In New Hampshire, license plates consisted of two
letters followed by 3 digits. How many possible license plates are
there?

(a) 262 × 103?

(b) 26× 25× 10× 9× 8?

(c) No idea.

Answer: 26 choices for the first letter, 26 for the second, 10
choices for the first number, the second number, and the third
number:

262 × 103 = 676, 000

Example 2: A traveling salesman wants to do a tour of all 50
state capitals. How many ways can he do this?

Answer: 50 choices for the first place to visit, 49 for the second,
. . . : 50! altogether.
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There are two general techniques for solving problems. Two of the
most important are:
The Sum Rule: If there are n(A) ways to do A and, distinct from
them, n(B) ways to do B, then the number of ways to do A or B
is n(A) + n(B).

I This rule generalizes: there are n(A) + n(B) + n(C ) ways to
do A or B or C

The Product Rule: If there are n(A) ways to do A and n(B) ways
to do B, then the number of ways to do A and B is n(A)× n(B).
This is true if the number of ways of doing A and B are
independent; the number of choices for doing B is the same
regardless of which choice you made for A.

I Again, this generalizes. There are n(A)× n(B)× n(C ) ways
to do A and B and C



Some Subtler Examples
Example 3: If there are n Senators on a committee, in how many
ways can a subcommittee be formed?

Two approaches:

1. Let N1 be the number of subcommittees with 1 senator (n),
N2 the number of subcommittees with 2 senator (n(n− 1)/2),
. . .
According to the sum rule:

N = N1 + N2 + · · ·+ Nn

I It turns out that Nk = n!
k!(n−k)! (n choose k) – proved later.

I A subtlety: What about N0? Do we allow subcommittees of
size 0? How about size n?

I The problem is somewhat ambiguous.

If we allow subcommittees of size 0 and n, then there are 2n

subcommittees altogether.
I This is just the number of subsets of the set of n Senators:

there is a bijection between subsets and subcommittees.



Number of subsets of a set
Claim: P(S) (the set of subsets of S) has 2|S| elements (i.e, a set
S has 2|S | subsets).
Proof #1: By induction on |S |.
Base case: If |S | = 0, then S = ∅. The empty set has one subset
(itself).

Inductive Step; Suppose S = {a1, . . . , an+1}. Let
S ′ = {a1, . . . , an}. By the induction hypothesis, |P(S ′)| = 2n.

Partition P(S) into two subsets:
A= the subsets of S that don’t contain an+1.
B = the subsets of S that do contain an+1.

It’s easy to see that A = P(S ′): T is a subset of S that doesn’t
contain an+1 if and only if T is a subset of S ′. Thus |A| = 2n.

Claim: |A| and |B|, since there is a bijection from A to B.
Proof: Let f : A→ B be defined by f (T ) = T ∪ {an+1}. Clearly if
T 6= T ′, then f (T ) 6= f (T ′), so f is an injection. And if T ′ ∈ B,
then an+1 ∈ T , T ′ = T − {an+1} ∈ A, and f (T ′) = T , so f is a
surjection. Thus, f is a bijection.



Thus, |A| = |B|, so |B| = 2n. Since P(S) = A ∪ B, by the Sum
Rule, |S | = |A|+ |B| = 2 · 2n = 2n+1.

Proof #2: Suppose S = {a1, . . . , an}. We can identify P(S) with
the set of bitstrings of length n. A bitstring b1...bn, where
bi ∈ {0, 1}, corresponds to the subset T where ai ∈ T if and only
if bi = 1.

Example: If n = 5, so S = {a1, a2, a3, a4, a5}, the bitstring 11001
corresponds to the set {a1, a2, a5}. It’s easy to see this
correspondence defines a bijection between the bitstrings of length
n and the subsets of S .

Why are there 2n bitstrings?

(a) Sum Rule

(b) Product Rule

(c) No clue

That’s the product rule: two choices for b1 (0 or 1), two choices
for b2, . . . , two choices for bn. We’re also using the bijection rule.
How?
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Back to the senators:

2. Simpler method: Use the product rule, jsut like above.

I Each senator is either in the subcommittee or out of it: 2
possibilities for each senator:

I 2× 2× · · · × 2 = 2n choices altogether

General moral: In many combinatorial problems, there’s more than
one way to analyze the problem.



What is cardinality

An issue I should have made precise before:

What does it mean to write |A| = n?

It means that there is a bijection f : A→ {1, . . . , n}.
I The Bijection Rule, Addition Rule, and Product Rule can be

proved as formal theorems once we have this definition.
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Question: How many ways can the full committee be split into
two sides on an issue?

(a) 2n

(b) 2n−1

(c) Something else

(d) No clue

Answer: This question is also ambiguous.

I If we care about which way each Senator voted, then the
answer is again 2n: Each subcommittee defines a split + vote
(those in the subcommittee vote Yes, those out vote No); and
each split + vote defines defines a subcommittee.

I If we don’t care about which way each Senator voted, the
answer is 2n/2 = 2n−1.

I This is an instance of the Division Rule (coming up).
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Coping with Ambiguity

If you think a problem is ambiguous:

1. Explain why

2. Choose one way of resolving the ambiguity

3. Solve the problem according to your interpretation
I Make sure that your interpretation doesn’t render the problem

totally trivial



More Examples
Example 4: How many legal configurations are there in Towers of
Hanoi with n rings?

(a) 3n

(b) 2n

(c) Something else

(d) No clue

Answer: The product rule again: Each ring gets to “vote” for
which pole it’s on.

I Once you’ve decided which rings are on each pole, their order
is determined.

I The total number of configurations is 3n

Example 5: How many distinguishable ways can the letters of
“computer” be arranged? How about “discrete”?

For computer, it’s 8!:

I 8 choices for the first letter, for the second, . . .
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Example 4: How many legal configurations are there in Towers of
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which pole it’s on.

I Once you’ve decided which rings are on each pole, their order
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Question: Is it also 8! for “discrete”?

(a) Yes

(b) No

(c) no idea

Hint: there are 2 e’s. Does that make a difference?

Suppose we called the two e ′s e1 and e2:

I There are two “versions” of each arrangement, depending on
which e comes first: discre1te2 is the same as discre2te1.

I Thus, the right answer is 8!/2!



Question: Is it also 8! for “discrete”?

Suppose we called the two e ′s e1 and e2:

I There are two “versions” of each arrangement, depending on
which e comes first: discre1te2 is the same as discre2te1.

I Thus, the right answer is 8!/2!



Division Rule: If there is a k-to-1 correspondence between of
objects of type A with objects of type B, and there are n(A)
objects of type A, then there are n(A)/k objects of type B.

A k-to-1 correspondence is an onto mapping in which every B
object is the image of exactly k A objects.



Permutations
A permutation of n things taken r at a time, written P(n, r), is an
arrangement in a row of r things, taken from a set of n distinct
things. Order matters.

Example 6: How many permutations are there of 5 things taken 3
at a time?

Answer: 5 choices for the first thing, 4 for the second, 3 for the
third: 5× 4× 3 = 60.

I If the 5 things are a, b, c , d , e, some possible permutations are:

abc abd abe acb acd ace
adb adc ade aeb aec aed
. . .

In general

P(n, r) =
n!

(n − r)!
= n(n − 1) · · · (n − r + 1)
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Combinations
A combination of n things taken r at a time, written C (n, r) or

(n
r

)
(“n choose r”) is any subset of r things from n things. Order
makes no difference,

Example 7: How many ways can we choose 3 things from 5?

(a) 5× 4× 3?
(b) 5× 4× 3/6?
(c) Something else?

Answer: If order mattered, then it would be 5× 4× 3. Since order
doesn’t matter,

abc, acb, bac, bca, cab, cba

are all the same.
I For way of choosing three elements, there are 3! = 6 ways of

ordering them.

Therefore, the right answer is (5× 4× 3)/3! = 10:

abc abd abe acd ace
ade bcd bce bde cde

In general, it’s C (n, r) = n!
(n−r)!r ! = n(n − 1) · · · (n − r + 1)/r !.
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More Examples

Example 8: How many full houses are there in poker?

I A full house has 5 cards, 3 of one kind and 2 of another.

I E.g.: 3 5’s and 2 K’s.

Answer: You need to find a systematic way of counting:

I Choose the denomination for which you have three of a kind:
13 choices.

I Choose the three: C (4, 3) = 4 choices

I Choose the denomination for which you have two of a kind:
12 choices

I Choose the two: C (4, 2) = 6 choices.

Altogether, there are:

13× 4× 12× 6 = 3744 choices
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0!
It’s useful to define 0! = 1.

Why?

1. Then we can inductively define

(n + 1)! = (n + 1)n!,

and this definition works even taking 0 as the base case
instead of 1.

2. A better reason: Things work out right for P(n, 0) and
C (n, 0)!

How many permutations of n things from n are there?

P(n, n) =
n!

(n − n)!
=

n!

0!
= n!

How many ways are there of choosing n out of n?
0 out of n? (

n

n

)
=

n!

n!0!
= 1;

(
n

0

)
=

n!

0!n!
= 1
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More Questions

Q: How many ways are there of choosing k things from {1, . . . , n}
if 1 and 2 can’t both be chosen? (Suppose n, k ≥ 2.)

Method #1: There are C (n, k) ways of choosing k things from n
with no constraints. There are C (n − 2, k − 2) ways of choosing k
things from n where 1 and 2 are definitely chosen:

I This amounts to choosing k − 2 things from {3, . . . , n}:
C (n − 2, k − 2).

Thus, the answer is

C (n, k)− C (n − 2, k − 2)
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Method #2: There are
I C (n − 2, k − 1) ways of choosing n from k where 1 is chosen,

but 2 isn’t from n where 1 is chosen, but 2 isn’t;
I choose k − 1 things from {3, . . . , n} (which, together with 1,

give the choice of k things)

I C (n − 2, k − 1) ways of choosing k things from n where 2 is
chosen, but 1 isn’t;

I C (n − 2, k) ways of choosing k things from n where neither 1
nor 2 are

So the answer is 2C (n − 2, k − 1) + C (n − 2, k).

Why is
C (n, k)− C (n − 2, k − 2) = 2C (n − 2, k − 1) + C (n − 2, k)?

I That’s the next topic!
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Combinatorial Identities
There all lots of identities that you can form using C (n, k). They
seem mysterious at first, but there’s usually a good reason for
them.

Theorem 1: If 0 ≤ k ≤ n, then

C (n, k) = C (n, n − k).

Proof:

C (n, k) =
n!

k!(n − k)!
=

n!

(n − k)!(n − (n − k))!
= C (n, n − k)

Q: Why should choosing k things out of n be the same as
choosing n − k things out of n?

A: There’s a 1-1 correspondence. For every way of choosing k
things out of n, look at the things not chosen: that’s a way of
choosing n − k things out of n.

This is a better way of thinking about Theorem 1 than the
combinatorial proof.
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Theorem 2: If 0 < k < n then(
n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)

Proof 1: (Combinatorial) Suppose we want to choose k objects
out of {1, . . . , n}. Either we choose the last one (n) or we don’t.

1. How many ways are there of choosing k without choosing the
last one? C (n − 1, k).

2. How many ways are there of choosing k including n? This
means choosing k − 1 out of {1, . . . , n − 1}: C (n − 1, k − 1).

Proof 2: Algebraic . . .

Note: If we define C (n, k) = 0 for k > n and k < 0, Theorems 1
and 2 still hold.

This explains why
C (n, k)− C (n − 2, k − 2) = 2C (n − 2, k − 1) + C (n − 2, k)

C (n, k) = C (n − 1, k) + C (n − 1, k − 1)
= C (n − 2, k) + C (n − 2, k − 1) + C (n − 2, k − 1) + C (n − 2, k − 2)
= C (n − 2, k) + 2C (n − 2, k − 1),+C (n − 2, k − 2)
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Pascal’s Triangle

Starting with n = 0, the nth row has n + 1 elements:

C (n, 0), . . . ,C (n, n)

Note how Pascal’s Triangle illustrates Theorems 1 and 2.



Theorem 3: For all n ≥ 0:

Σn
k=0

(
n

k

)
= 2n

Proof 1:
(n
k

)
tells you all the way of choosing a subset of size k

from a set of size n. This means that the LHS is all the ways of
choosing a subset from a set of size n. The product rule says that
this is 2n.

Proof 2: By induction. Let P(n) be the statement of the theorem.

Basis: Σ0
k=0

(0
k

)
=
(0
0

)
= 1 = 20. Thus P(0) is true.

Inductive step: How do we express Σn
k=0C (n, k) in terms of n − 1,

so that we can apply the inductive hypothesis?

I Use Theorem 2!
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The Binomial Theorem

We want to compute (x + y)n.
Some examples:

(x + y)0 = 1

(x + y)1 = x + y

(x + y)2 = x2 + 2xy + y2

(x + y)3 = x3 + 3x2y + 3xy2 + y3

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

The pattern of the coefficients is just like that in the corresponding
row of Pascal’s triangle!



Binomial Theorem:

(x + y)n = Σn
k=0

(
n

k

)
xn−kyk

Proof 1: By induction on n. P(n) is the statement of the theorem.

Basis: P(1) is obviously OK. (So is P(0).)

Inductive step:

(x + y)n+1

= (x + y)(x + y)n

= (x + y)Σn
k=0

(n
k

)
xn−kyk

= Σn
k=0

(n
k

)
xn−k+1yk + Σn

k=0

(n
k

)
xn−kyk+1

= . . . [Lots of missing steps]
= yn+1 + Σn

k=0(
(n
k

)
+
( n
k−1
)
)xn−k+1yk

= yn+1 + Σn
k=0(

(n+1
k

)
xn+1−kyk

= Σn+1
k=0

(n+1
k

)
xn+1−kyk



Binomial Theorem:

(x + y)n = Σn
k=0

(
n

k

)
xn−kyk

Proof 2: What is the coefficient of the xn−kyk term in (x + y)n?



Using the Binomial Theorem
Q: What is (x + 2)4?

A:

(x + 2)4

= x4 + C (4, 1)x3(2) + C (4, 2)x222 + C (4, 3)x23 + 24

= x4 + 8x3 + 24x2 + 32x + 16

Q: What is (1.02)7 to 4 decimal places?

A:

(1 + .02)7

= 17 + C (7, 1)16(.02) + C (7, 2)15(.0004) + C (7, 3)(.000008) + · · ·
= 1 + .14 + .0084 + .00028 + · · ·
≈ 1.14868
≈ 1.1487

Note that we have to go to 5 decimal places to compute the
answer to 4 decimal places.



Inclusion-Exclusion Rule
Remember the Sum Rule:

The Sum Rule: If there are n(A) ways to do A and, distinct from
them, n(B) ways to do B, then the number of ways to do A or B
is n(A) + n(B).
What if the ways of doing A and B aren’t distinct?

Example: If 112 students take CS280, 85 students take CS220,
and 45 students take both, how many take either CS280 or CS220.

A = students taking CS280
B = students taking CS220

|A ∪ B| = |A|+ |B| − |A ∩ B| = 112 + 85− 45 = 152

This is best seen using a Venn diagram:



What happens with three sets?

|A ∪ B ∪ C | =
|A|+ |B|+ |C | − |A ∩ B| − |A ∩ C | − |B ∩ C |

+|A ∩ B ∩ C |
Example: If there are 300 engineering majors, 112 take CS280, 85
take CS 220, 95 take AEP 356, 45 take both CS280 and CS 220,
30 take both CS 280 and AEP 356, 25 take both CS 220 and AEP
356, and 5 take all 3, how many don’t take any of these 3 courses?

A = students taking CS 280
B = students taking CS 220
C = students taking AEP 356

|A ∪ B ∪ C |
= |A|+ |B|+ |C | − |A ∩ B| − |B ∩ C | − |A ∩ C |

+|A ∩ B ∩ C |
= 112 + 85 + 95− 45− 30− 25 + 5
= 197

We are interested in A ∪ B ∪ C = 300− 197 = 103.



The General Rule
More generally,

| ∪nk=1 Ak | =
n∑

k=1

∑
{I |I⊂{1,...,n}, |I |=k}

(−1)k−1| ∩i∈I Ai |

Why is this true? Suppose a ∈ ∪nk=1Ak , and is in exactly m sets. a
gets counted once on the LHS. How many times does it get
counted on the RHS?

I a appears in m sets (1-way intersection)

I a appears in C (m, 2) 2-way intersections

I a appears in C (m, 3) 3-way intersections

I . . .

Thus, on the RHS, a gets counted

m∑
k=1

(−1)k−1C (m, k) = 1 times.



Why is
∑m

k=1(−1)k−1C (m, k) = 1?

I That certainly doesn’t seem obvious!

What theorems do we have that give expressions like∑m
k=1(−1)k−1C (m, k)?

By the binomial theorem:

0 = (−1 + 1)m =
∑m

k=0(−1)k1m−kC (m, k)
= 1 +

∑m
k=1(−1)kC (m, k)

Thus,
∑m

k=1(−1)kC (m, k) = −1, so

m∑
k=1

(−1)k−1C (m, k) = 1.

Sometimes math is amazing :-)

[This result can also be proved by induction, without using the
binomial theorem.]
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Balls and Urns

“Balls and urns” problems are paradigmatic. Many problems can
be recast as balls and urns problems, once we figure out which are
the balls and which are the urns.

How many ways are there of putting b balls into u urns?

I That depends whether the balls are distinguishable and
whether the urns are distinguishable

How many ways are there of putting 5 balls into 2 urns?

I If both balls and urns are distinguishable: 25 = 32
I Choose the subset of balls that goes into the first urn
I Alternatively, for each ball, decide which urn it goes in
I This assumes that it’s OK to have 0 balls in an urn.

I If urns are distinguishable but balls aren’t: 6
I Decide how many balls go into the first urn: 0, 1, . . . , 5

I If balls are distinguishable but urns aren’t: 25/2 = 16

I If balls and urns are indistinguishable: 6/2 = 3
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Seems straightforward. But what if we had 6 balls and 2 urns?

I If balls and urns are distinguishable:

26

I If urns are distinguishable and balls aren’t: 7

I If balls are distinguishable but urns aren’t:

26/2 = 25

I If balls and urns are indistinguishable:

(a) 7/2
(b) 3
(c) 4
(d) something else?

I It can’t be 7/2, since that’s not an integer
I The problem is that if there are 3 balls in each urn, and you

switch urns, then you get the same solution
I The right answer is 4!



Seems straightforward. But what if we had 6 balls and 2 urns?

I If balls and urns are distinguishable: 26

I If urns are distinguishable and balls aren’t:

7

I If balls are distinguishable but urns aren’t:

26/2 = 25

I If balls and urns are indistinguishable:

(a) 7/2
(b) 3
(c) 4
(d) something else?

I It can’t be 7/2, since that’s not an integer
I The problem is that if there are 3 balls in each urn, and you

switch urns, then you get the same solution
I The right answer is 4!



Seems straightforward. But what if we had 6 balls and 2 urns?

I If balls and urns are distinguishable: 26

I If urns are distinguishable and balls aren’t: 7

I If balls are distinguishable but urns aren’t:

26/2 = 25

I If balls and urns are indistinguishable:

(a) 7/2
(b) 3
(c) 4
(d) something else?

I It can’t be 7/2, since that’s not an integer
I The problem is that if there are 3 balls in each urn, and you

switch urns, then you get the same solution
I The right answer is 4!



Seems straightforward. But what if we had 6 balls and 2 urns?

I If balls and urns are distinguishable: 26

I If urns are distinguishable and balls aren’t: 7

I If balls are distinguishable but urns aren’t:

26/2 = 25

I If balls and urns are indistinguishable:

(a) 7/2
(b) 3
(c) 4
(d) something else?

I It can’t be 7/2, since that’s not an integer
I The problem is that if there are 3 balls in each urn, and you

switch urns, then you get the same solution
I The right answer is 4!



Seems straightforward. But what if we had 6 balls and 2 urns?

I If balls and urns are distinguishable: 26

I If urns are distinguishable and balls aren’t: 7

I If balls are distinguishable but urns aren’t:

26/2 = 25

I If balls and urns are indistinguishable:

(a) 7/2
(b) 3
(c) 4
(d) something else?

I It can’t be 7/2, since that’s not an integer
I The problem is that if there are 3 balls in each urn, and you

switch urns, then you get the same solution
I The right answer is 4!



Distinguishable Urns

How many ways can b distinguishable balls be put into u
distinguishable urns?

I By the product rule, this is ub

How many ways can b indistinguishable balls be put into u
distinguishable urns?

C (u + b − 1, b)
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Indistinguishable Urns

How many ways can b distinguishable balls be put into u
indistinguishable urns?

First view the urns as distinguishable: ub

For every solution, look at all u! permutations of the urns. That
should count as one solution.

I By the Division Rule, we get: ub/u! ?

This can’t be right! It’s not an integer (e.g. 73/7!).

What’s wrong?

The situation is even worse when we have indistinguishable balls in
indistinguishable urns.
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Reducing Problems to Balls and Urns

Q1: How many different configurations are there in Towers of
Hanoi with n rings?

A: The urns are the poles, the balls are the rings. Both are
distinguishable.

Q2: How many solutions are there to the equation x + y + z = 65,
if x , y , z are nonnegative integers?

A: You have 65 indistinguishable balls, and want to put them into
3 distinguishable urns (x , y , z). Each way of doing so corresponds
to one solution.

Q3: How many ways can 8 electrons be assigned to 4 energy
states?

A: The electrons are the balls; they’re indistinguishable. The
energy states are the urns; they’re distinguishable.
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Reducing Problems to Balls and Urns
Q1: How many different configurations are there in Towers of
Hanoi with n rings?

A: The urns are the poles, the balls are the rings. Both are
distinguishable.

I 3n

Q2: How many solutions are there to the equation x + y + z = 65,
if x , y , z are nonnegative integers?

A: You have 65 indistinguishable balls, and want to put them into
3 distinguishable urns (x , y , z). Each way of doing so corresponds
to one solution.

I C (67, 65) = 67× 33 = 2211

Q3: How many ways can 8 electrons be assigned to 4 energy
states?

A: The electrons are the balls; they’re indistinguishable. The
energy states are the urns; they’re distinguishable.

I C (11, 8) = (11× 10× 9)/6 = 165



The Pigeonhole Principle

The Pigeonhole Principle: If n + 1 pigeons are put into n holes,
at least two pigeons must be in the same hole.

This seems obvious. How can it be used in combinatorial anlysis?

Q1: If you have only blue socks and brown socks in your drawer,
how many do you have to pull out before you’re sure to have a
matching pair.

A: The socks are the pigeons and the holes are the colors. There
are two holes. With three pigeons, there have to be at least two in
one hole.

I What happens if we also have black socks?
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A more surprising use of the pigeonhole principle

Q2: Alice and Bob play the following game: Bob gets to pick any
10 integers from 1 to 40. Alice has to find two different sets of
three numbers that have the same sum. Prove that Alice always
wins.

A: So what are the pigeons and what are the holes?

The pigeons are the possible sets of three numbers. There are
C (10, 3) = 120 of them.

The holes are the possible sums. The sum is at least 6, and at
most 38 + 39 + 40 = 117. So there are 112 holes.

I There are more pigeons that holes!

Therefore, no matter which set of 10 numbers Bob picks, Alice can
find two subsets of size three that have the same sum!
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Generalized Pigeonhole Principle
Theorem: If |A| > k|B| and f : A→ B, then for at least one
element b ∈ B, |f −1(b)| > k

I f −1(b) = {a ∈ A : f (a) = b}.

The Pigeonhole Principle is the special case of the theorem with
k = 1.

I the elements of A are the pigeons, the elements of B are the
holes.

Example: Suppose that the number of hairs on a person’s head is
at most 200,000 and the population of Manhattan is greater than
2,000,000. Then we are guaranteed there is a group of k people in
Manhattan that have exactly the same number of hairs on their
heads. What’s the largest that k could be?

(a) 1

(b) 2

(c) 5

(d) 10

(e) 11
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