
Logic: The Big Picture
Logic is a tool for formalizing reasoning. There are lots of different
logics:

I probabilistic logic: for reasoning about probability

I temporal logic: for reasoning about time (and programs)

I epistemic logic: for reasoning about knowledge

The simplest logic (on which all the rest are based) is propositional
logic. It is intended to capture features of arguments such as the
following:

Borogroves are mimsy whenever it is brillig. It is now
brillig and this thing is a borogrove. Hence this thing is
mimsy.

Propositional logic is good for reasoning about

I conjunction, negation, implication (“if . . . then . . . ”)

Amazingly enough, it is also useful for

I circuit design

I program verification



Propositional Logic: Syntax
To formalize the reasoning process, we need to restrict the kinds of
things we can say. Propositional logic is particularly restrictive.
The syntax of propositional logic tells us what are legitimate
formulas.

We start with primitive propositions, basic statements like
I It is now brillig
I This thing is mimsy
I It’s raining in San Francisco
I n is even

We can then form more complicated compound propositions using
connectives like:

I ¬: not
I ∧: and
I ∨: or
I ⇒: implies

MCS uses English (NOT, AND, OR, IMPLIES). I’ll stick to the
standard mathematical notation.



Examples:

I ¬P: it is not the case that P

I P ∧ Q: P and Q

I P ∨ Q: P or Q

I P ⇒ Q: P implies Q (if P then Q)

Typical formula:

P ∧ (¬P ⇒ (Q ⇒ (R ∨ P)))



Wffs

Formally, we define well-formed formulas (wffs or just formulas)
inductively:

1. Every primitive proposition P,Q,R, . . . is a wff

2. If A is a wff, so is ¬A
3. If A and B are wffs, so are A ∧ B, A ∨ B, and A⇒ B,



Disambiguating Wffs
We use parentheses to disambiguate wffs:

I P ∨ Q ∧ R can be either (P ∨ Q) ∧ R or P ∨ (Q ∧ R)

Mathematicians are lazy, so there are standard rules to avoid
putting in parentheses.

I In arithmetic expressions, × binds more tightly than +, so
3 + 2× 5 means 3 + (2× 5)

I In wffs, here is the precedence order:
I ¬
I ∧
I ∨
I ⇒
I ⇔

Thus, P ∨ Q ∧ R is P ∨ (Q ∧ R);
P ∨ ¬Q ∧ R is P ∨ ((¬Q) ∧ R)
P ∨ ¬Q ⇒ R is (P ∨ (¬Q))⇒ R

I With two or more instances of the same binary connective,
evaluate left to right:
P ⇒ Q ⇒ R is (P ⇒ Q)⇒ R



Translating English to Wffs
To analyze reasoning, we have to be able to translate English to
wffs.
Consider the following sentences:

1. Bob doesn’t love Alice

2. Bob loves Alice and loves Ann

3. Bob loves Alice or Ann

4. Bob loves Alice but doesn’t love Ann

5. If Bob loves Alice then he doesn’t love Ann

First find appropriate primitive propositions:
I P: Bob loves Alice
I Q: Bob loves Ann

Then translate:

1. ¬P
2. P ∧ Q

3. P ∨ Q

4. P ∧ ¬Q (note: “but” becomes “and”)

5. P ⇒ ¬Q



Evaluating Formulas

Given a formula, we want to decide if it is true or false.

How do we deal with a complicated formula like:

P ∧ (¬P ⇒ (Q ⇒ (R ∨ P)))

The truth or falsity of such a formula depends on the truth or
falsity of the primitive propositions that appear in it. We use truth
tables to describe how the basic connectives (¬, ∧, ∨, ⇒, ⇔)
work.



Truth Tables
For ¬:

P ¬P
T F
F T

For ∧:
P Q P ∧ Q

T T T
T F F
F T F
F F F

For ∨:
P Q P ∨ Q

T T T
T F T
F T T
F F F

This means ∨ is inclusive or, not exclusive or.
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Exclusive Or

What’s the truth table for “exclusive or”?

P Q P ⊕ Q

T T F
T F T
F T T
F F F

P ⊕ Q is equivalent to (P ∧ ¬Q) ∨ (¬P ∧ Q)

P Q ¬P ¬Q P ∧ ¬Q Q ∧ ¬P (P ∧ ¬Q) ∨ (¬P ∧ Q)

T T F F F F F
T F F T T F T
F T T F F T T
F F T T F F F



Truth Table for Implication
For ⇒:

P Q P ⇒ Q

T T
T F
F T
F F

Why is this right? What should the truth value of P ⇒ Q be when
P is false?

I Despite what the book says, implications with false
hypotheses come up a lot:

I If he hadn’t been drunk (he was), he wouldn’t have had the
accident

I This isn’t vacuously true!

I This choice is mathematically convenient

I As long as Q is true when P is true, then P ⇒ Q will be true
no matter what.



How many possible truth tables are there with two primitive
propositions?

P Q ?

T T
T F
F T
F F

(a) 16?
(b) 32?
(c) no clue?

By the product rule, there are 16.
I There are another two with only one primitive proposition.

We’ve just defined ¬, ∧, ∨, ⇒
I Why didn’t we bother with the rest?
I They’re definable!

E.g. P ⊕ Q is equivalent to (P ∧ ¬Q) ∨ (¬P ∧ Q)

I Could get rid of ⇒: P ⇒ Q is equivalent to ¬P ∨ Q.
I Could also get rid of ∨: P ∨ Q is equivalent to ¬(¬P ∧ ¬Q).
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Tautologies

A truth assignment is an assignment of T or F to every
proposition.

I How hard is it to check if a formula is true under a given truth
assignment?

I Easy: just plug it in and evaluate.
I Time linear in the length of the formula

A tautology (or theorem) is a formula that evaluates to T for
every truth assignment.

Examples:

I (P ∨ Q)⇔ ¬(¬P ∧ ¬Q)

I P ∨ Q ∨ (¬P ∧ ¬Q)
I (P ⇒ Q) ∨ (Q ⇒ P)

I It’s necessarily true that if elephants are pink then the moon is
made of green cheese or if the moon is made of green cheese,
then elephants are pink.



How hard is it to check if a formula is a tautology?
I How many truth assignments are there for a formula with n

primitive propositions:

(a) 2n

(b) n
(c) ???



Checking tautologies
Are there better ways of telling if a formula is a tautology than
trying all possible truth assignments.

I In the worst case, it appears not.
I The problem is co-NP-complete.
I The satisfiability problem—deciding if at least one truth

assignment makes the formula true—is NP-complete.

Nevertheless, it often seems that the reasoning is straightforward:
Why is this true:

((P ⇒ Q) ∧ (Q ⇒ R))⇒ (P ⇒ R)

We want to show that if P ⇒ Q and Q ⇒ R is true, then P ⇒ R
is true.

So assume that P ⇒ Q and Q ⇒ R are both true. To show that
P ⇒ R, assume that P is true. Since P ⇒ Q is true, Q must be
true. Since Q ⇒ R is true, R must be true. Hence, P ⇒ R is true.

We want to codify such reasoning.



Formal Deductive Systems

A formal deductive system (also known as an axiom system)
consists of

I axioms (special formulas)

I rules of inference: ways of getting new formulas from other
formulas. These have the form

A1

A2
...
An

——
B

Read this as “from A1, . . . ,An, infer B.”
I Sometimes written “A1, . . . ,An ` B”

Think of the axioms as tautologies, while the rules of inference
give you a way to derive new tautologies from old ones.



Derivations

A derivation (or proof ) in an axiom system AX is a sequence of
formulas

C1, . . . ,CN ;

each formula Ck is either an axiom in AX or follows from previous
formulas using an inference rule in AX :

I i.e., there is an inference rule A1, . . . ,An ` B such that
Ai = Cji for some ji < N and B = CN .

This is said to be a derivation or proof of CN .

A derivation is a syntactic object: it’s just a sequence of formulas
that satisfy certain constraints.

I Whether a formula is derivable depends on the axiom system

I Different axioms → different formulas derivable
I Derivation has nothing to do with truth!

I How can we connect derivability and truth?



Typical Axioms

I P ⇒ ¬¬P
I P ⇒ (Q ⇒ P)

What makes an axiom “acceptable”?

I it’s a tautology



Typical Rules of Inference
Modus Ponens

A⇒ B
A
———
B

Modus Tollens

A⇒ B
¬B
——
¬A

What makes a rule of inference “acceptable”?
I It preserves validity:

I if the antecedents are valid, so is the conclusion
I Both modus ponens and modus tollens are acceptable



Sound and Complete Axiomatizations

Standard question in logic:

Can we come up with a nice sound and complete
axiomatization: a (small, natural) collection of axioms
and inference rules from which it is possible to derive all
and only the tautologies?

I Soundness says that only tautologies are derivable

I Completeness says you can derive all tautologies

If all the axioms are valid and all rules of inference preserve
validity, then all formulas that are derivable must be valid.

I Proof: by induction on the length of the derivation

It’s not so easy to find a complete axiomatization.



A Sound and Complete Axiomatization for Propositional
Logic

Consider the following axiom schemes:

A1. A⇒ (B ⇒ A)

A2. (A⇒ (B ⇒ C ))⇒ ((A⇒ B)⇒ (A⇒ C ))

A3. ((A⇒ B)⇒ ((A⇒ ¬B)⇒ ¬A)

These are axioms schemes; each one encodes an infinite set of
axioms:

I P ⇒ (Q ⇒ P), (P ⇒ R)⇒ (Q ⇒ (P ⇒ R)) are instances of
A1.

Theorem: A1, A2, A3 + modus ponens give a sound and
complete axiomatization for formulas in propositional logic
involving only ⇒ and ¬.

I Recall: can define ∨ and ∧ using ⇒ and ¬
I P ∨ Q is equivalent to ¬P ⇒ Q
I P ∧ Q is equivalent to ¬(P ⇒ ¬Q)



A Sample Proof

Derivation of P ⇒ P:

1. P ⇒ ((P ⇒ P)⇒ P)
[instance of A1: take A = P, B = P ⇒ P]

2. (P ⇒ ((P ⇒ P)⇒ P))⇒ ((P ⇒ (P ⇒ P))⇒ (P ⇒ P))
[instance of A2: take A = C = P, B = P ⇒ P]

3. (P ⇒ (P ⇒ P))⇒ (P ⇒ P)
[applying modus ponens to 1, 2]

4. P ⇒ (P ⇒ P) [instance of A1: take A = B = P]

5. P ⇒ P [applying modus ponens to 3, 4]

Try deriving P ⇒ ¬¬P from these axioms

I it’s hard!



Algorithm Verification

This is (yet another) hot area of computer science.
I How do you prove that your program is correct?

I You could test it on a bunch of instances. That runs the risk
of not exercising all the features of the program.

In general, this is an intractable problem.

I For small program fragments, formal verification using logic is
useful

I It also leads to insights into program design.



Syntax of First-Order Logic

We have:

I constant symbols: Alice, Bob

I variables: x , y , z , . . .
I predicate symbols of each arity: P, Q, R, . . .

I A unary predicate symbol takes one argument: P(Alice), Q(z)
I A binary predicate symbol takes two arguments:

Loves(Bob,Alice), Taller(Alice,Bob).

An atomic expression is a predicate symbol together with the
appropriate number of arguments.

I Atomic expressions act like primitive propositions in
propositional logic

I we can apply ∧, ∨, ¬ to them
I we can also quantify the variables that appear in them

Typical formula:

∀x∃y(P(x , y)⇒ ∃zQ(x , z))



Semantics of First-Order Logic
Assume we have some domain D.

I The domain could be finite:
I {1, 2, 3, 4, 5}
I the people in this room

I The domain could be infinite
I N, R, . . .

A statement like ∀xP(x) means that P(d) is true for each d in the
domain.

I If the domain is N, then ∀xP(x) is equivalent to

P(0) ∧ P(1) ∧ P(2) ∧ . . .

Similarly, ∃xP(x) means that P(d) is true for some d in the
domain.

I If the domain is N, then ∃xP(x) is equivalent to

P(0) ∨ P(1) ∨ P(2) ∨ . . .



Is ∃x(x2 = 2) true?

(a) Yes

(b) No

(c) It depends

Yes if the domain is R; no if the domain is N.

How about ∀x∀y((x < y)⇒ ∃z(x < z < y))?

We’ll skip the formal semantics of first-order logic here.

I If you want to know more, take a logic course!
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Translating from English to First-Order Logic

All men are mortal
Socrates is a man
Therefore Socrates is mortal

There is two unary predicates: Mortal and Man
There is one constant: Socrates
The domain is the set of all people

∀x(Man(x)⇒ Mortal(x))
Man(Socrates)
—————————————–
Mortal(Socrates)



More on Quantifiers
∀x∀yP(x , y) is equivalent to ∀y∀xP(x , y)

I P is true for every choice of x and y

Similarly ∃x∃yP(x , y) is equivalent to ∃y∃xP(x , y)
I P is true for some choice of (x , y).

What about ∀x∃yP(x , y)? Is it equivalent to ∃y∀xP(x , y)?

(a) Yes

(b) ∃y∀xP(x , y) implies ∀x∃yP(x , y), but the converse isn’t true

(c) ∀x∃yP(x , y) implies ∃y∀xP(x , y), but the converse isn’t true

(d) ???

Suppose the domain is the natural numbers. Compare:
I ∀x∃y(y ≥ x)
I ∃y∀x(y ≥ x)

In general, ∃y∀xP(x , y)⇒ ∀x∃yP(x , y) is logically valid.
I A logically valid formula in first-order logic is the analogue of

a tautology in propositional logic.
I A formula is logically valid if it’s true in every domain and for

every interpretation of the predicate symbols.
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More valid formulas involving quantifiers:

I ¬∀xP(x)⇔ ∃x¬P(x)

I Replacing P by ¬P, we get:

¬∀x¬P(x)⇔ ∃x¬¬P(x)

I Therefore
¬∀x¬P(x)⇔ ∃xP(x)

I Similarly, we have

¬∃xP(x)⇔ ∀x¬P(x)

¬∃x¬P(x)⇔ ∀xP(x)



Axiomatizing First-Order Logic

Just as in propositional logic, there are axioms and rules of
inference that provide a sound and complete axiomatization for
first-order logic, independent of the domain.

A typical axiom:

I ∀x(P(x)⇒ Q(x))⇒ (∀xP(x)⇒ ∀xQ(x)).

A typical rule of inference is Universal Generalization:

ϕ(x) ` ∀xϕ(x)

Gödel provided a sound and complete axioms system for first-order
logic in 1930.



Is Everything Provable?
If we ask you to prove something from homework which happens
true, is it necessarily provable?

I Of course, if we ask you to prove it, then it should be provable.
I But what about if a computer scientist is trying to prove a

theorem that she is almost certain is true.
I Can she be confident that it has a proof?
I Can something be true without being provable?

I Yes
I No
I It depends.

Remember, whether something is provable depends on the rules of
the game:

I the axioms and inference rules

Obviously, you can’t prove much if you don’t have a good selection
of axioms and inference rules to work with.

I In a remarkable result, Gödel proved that, no matter what
axiom system AX you used, there were statements that were
true about arithmetic that could not be proved in AX.
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Axiomatizing Arithmetic

Suppose we restrict the domain to the natural numbers, and allow
only the standard symbols of arithmetic (+, ×, =, >, 0, 1).
Typical true formulas include:

I ∀x∃y(x × y = x)

I ∀x∃y(x = y + y ∨ x = y + y + 1)

Let Prime(x) be an abbreviation of

∀y∀z((x = y × z)⇒ ((y = 1) ∨ (y = x)))

When is Prime(x) true?

If x is prime!

What does the following formula say?

I ∀x(∃y(y > 1 ∧ x = y + y)⇒
∃z1∃z2(Prime(z1) ∧ Prime(z2) ∧ x = z1 + z2))

I This is Goldbach’s conjecture: every even number other than
2 is the sum of two primes.

I Is it true? We don’t know.
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Gödel’s Incompleteness Theorem
Is there an axiom system from which you can prove all and only
true statements about arithmetic?

I that is, you want the axiom system to be sound
I The axioms must be valid arithmetic facts, and the rules of

inference must preserve validity
I otherwise you could prove statements that are false

and complete
I This means that you can prove all true statements

This is easy!
I Just take the axioms to consist of all true statements.

That’s cheating! To make this interesting, we need a restriction:
I The set of axioms must be “nice”

I technically: recursive, so that a program can check whether a
formula is an axiom

Gödel’s Incompleteness Theorem: There is no sound and complete
recursive axiomatization of arithmetic.

I This is arguably the most important result in mathematics of
the 20th century.
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