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Persi Diaconis, Professor of Statistics and Mathematics, Stanford University

Admitted to Harvard PhD program for his abilities as a cardsharp

Can do eight consecutive perfect shuffles



www.ncetm.org.uk



Perfect Shuffles
● A shuffle is a permutation of n cards

– A permutation is a bijection from a set to itself
– … it is a function
– … and functions can be composed (do one shuffle after another)

● The set of all permutations (shuffles) forms a group under 
composition
– Recall from HW6, a group is a set G plus operation * s.t.

● Closure: a * b ∈ G for all a, b ∈ G

● Associativity: (a * b) * c = a * (b * c)

● Identity: ∃ e ∈ G s.t. a * e = e * a = a for all a ∈ G

● Inverse: For all a ∈ G, ∃ a-1 ∈ G s.t. a * a-1 = a-1 * a = e



Perfect Shuffles
● The set of all permutations (shuffles) forms a 

group under composition
– This is called the symmetric group

● Two types of perfect shuffles: IN and OUT
– Here are some combinations:

IIIII, OO, IOIO, OOIIOOII

– The set of all such combinations forms a subgroup of 
the symmetric group

● It's denoted <I, O> (“the group generated by I and O”)



Order of a perfect shuffle
● The order of an element a in a group (or, the length of 

its cycle) is the smallest integer m such that am = e

a  a2  a3  a4  …  am – 1  e

● In group <I, O> on 2n cards
– the order of I is the smallest k s.t. 2k ≡ 1 (mod 2n + 1)

– the order of O is the smallest k s.t. 2k ≡ 1 (mod 2n – 1)

● 8 perfect out-shuffles restore order in a 52-card deck!
– … since 28 ≡ 1 (mod 51)

● 2n – 1 out-shuffles or 2n + 1 in-shuffles also restore the 
deck (Fermat's Little Theorem!)



Permutation groups are fundamental

● Every group is isomorphic to a 
group of permutations [Cayley's 
Theorem]

● Arthur Cayley (1821-95) took 
group theory beyond 
permutations. His theorem is 
the link.
– Cayley's formula for number of 

trees on a labeled graph is also 
named after him



Groups encode symmetries

Dihedral group of an equilateral triangle
ecademy.agnesscott.edu



Symmetries can be continuous!

The 1D rotation group SO(2) acting on the sphere
The points trace out orbits under rotation

mathworld.wolfram.com



A Lie group of continuous symmetries 
is a differentiable manifold

Some Lie groups:
● Euclidean space 

(under vector 
addition)

● SO(2), SO(3), SO(n)
● Heisenberg group
● Lorentz group

Stomatapoll@wikipedia
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http://sites.davidson.edu/mathmovement/algebra-of-angry-birds/ 



The Lagrangian of a system

● The action of a physical system with parameters q is

… where L is the Lagrangian of the system
● The path taken by the system is given by the principle of least 

action, as expressed by the Euler-Lagrange equation

∂ L
∂ q

− d
dt (∂ L∂ q̇ )=0

I=∫ L(q , q̇ ,t )dt

http://sites.davidson.edu/mathmovement/algebra-of-angry-birds/


A symmetry of the Lagrangian

● The Lagrangian of a free particle is its kinetic energy 
½ mv2

● This is the same regardless of the particle's absolute 
position, so it has translational symmetry (Lie group is 
Euclidean space)

● Substituting into Euler-Lagrange equation,

… so the momentum of the system       or mv is constant

d
dt ( ∂L∂ ẋ )=∂L

∂ x
=0

∂L
∂ ẋ



Noether's Theorem

● Any global differentiable symmetry of the action of 
the Lagrangian corresponds to a conserved 
quantity
– Translational invariance ↔ Momentum
– Time invariance ↔ Energy
– Rotational invariance ↔ Angular momentum

…

● Noether's Second Theorem: local symmetries
– Local energy conservation in general relativity



Emmy Noether, 1882-1935







Galois Theory

● A polynomial of degree 5 or higher is not always 
solvable by radicals
– E.g. roots of x5 – x – 1 = 0 can't be found by radicals

● Proved by Niels Abel (1802-29)
● Re-proved, and the conditions for unsolvability-by-

radicals characterized, by Évariste Galois (1811-32)
– Galois group of a polynomial: set of permutations of its 

roots s.t. any algebraic equation satisfied by the roots is 
still satisfied after the permutation

– ^^^ Symmetries of the roots



Niels Henrik Abel, 1802-29 Évariste Galois, 1811-32



1 + 2 + 3 + 4 + 5 + …  = ???



1 + 2 + 3 + 4 + 5 + …  =  1 
12

–



1 + 2 + 3 + 4 + 5 + …  =  1 
12

–

Pull the other one!



A “proof”
● S1 = 1 – 1 + 1 – 1 + 1 – 1 + …

– S1 = 0 when #terms is even, 1 when it is odd

– … so S1 = (0 + 1) / 2 = ½

● S2 = 1 – 2 + 3 – 4 + 5 – 6 + …

– 2S2 = 1 – 2 + 3 – 4 + 5 – 6 + …

            + 1 – 2 + 3 – 4 + 5 – 6 + …

     = 1 – 1 + 1 – 1 + 1 – 1 + … = S1 = ½

– So S2 = ¼

● S – S2 = 1 + 2 + 3 + 4 + 5 + 6 + …

        – ( 1 – 2 + 3 – 4 + 5 – 6 + … )

         = 4 + 8 + 12 + 16 + … = 4S
● So 3S = –S2 = –¼, or S = -1/12



What are the flaws in this “proof”?



Srinivasa Ramanujan, Notebook 1, Chapter 8

But there's more to this result than meets the eye...



Srinivasa Ramanujan to G. H. Hardy, 27 Feb 1913

“Dear Sir,

I am very much gratified on perusing your letter of the 8th 
February 1913. I was expecting a reply from you similar to 
the one which a Mathematics Professor at London wrote 
asking me to study carefully Bromwich's Infinite Series and 
not fall into the pitfalls of divergent series. … I told him that 
the sum of an infinite number of terms of the series: 
1 + 2 + 3 + 4 + ··· = −1/12 under my theory. If I tell you this 
you will at once point out to me the lunatic asylum as my 
goal. I dilate on this simply to convince you that you will 
not be able to follow my methods of proof if I indicate the 
lines on which I proceed in a single letter.”



Srinivasa Ramanujan, 1887–1920



The Riemann Zeta Function

for complex numbers s with real part > 1

ζ (s)= 1

1s
+ 1
2s

+ 1
3s

+ 1
4s

+ 1
5s

…



The Riemann Zeta Function

for complex numbers s with real part > 1

For Re(s) ≤ 1, the series diverges, but ζ(s) can be 
defined by a process called analytic continuation.

ζ (s)= 1

1s
+ 1
2s

+ 1
3s

+ 1
4s

+ 1
5s

…



The Riemann Zeta Function

for complex numbers s with real part > 1

For Re(s) ≤ 1, the series diverges, but ζ(s) can be 
defined by a process called analytic continuation.

This also gives ζ(-1) = -1/12 !

ζ (s)= 1

1s
+ 1
2s

+ 1
3s

+ 1
4s

+ 1
5s

…



The Riemann Hypothesis

All the “non-trivial” 
zeros of the Riemann 
zeta function ζ(s) have 
real part ½

Empetrisor@Wikipedia



The Riemann Hypothesis

All the “non-trivial” 
zeros of the Riemann 
zeta function ζ(s) have 
real part ½

Empetrisor@Wikipedia

A consequence: characterizes the 
distribution of the prime numbers 
(more precisely, gives a tight bound 
for the error term in the Prime 
Number Theorem)







(and avoid 
backwards 
proofs)
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