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Fermat's Last Theorem:
" has no integer solution for n > 2




Recap: Modular Arithmetic

e Definition: a=b (modm) if andonly if m|a—>b
* Consequences:

- a=b (mod m) Iff a mod m = b mod m

(congruence < Same vemadinder)

— If a=b (mod m) and ¢ = d (mod m), then

catc=b+d (modm)
* ac = bd (mod m)
(congruences can Sometimes be treadted like equations)
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e If p1s a prime number, and a Is any Integer, then
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Fermat's Little Theorem

e If p1s a prime number, and a Is any Integer, then

a” = a (modp)

 If a 1s not divisible by p, then

a’' =1 (modp)



Fermat's Little Theorem

e Examples:

- 21" =21 (mod?7)
.. but21°= 1 (mod 7)

- 111" =1 (mod 13)

757,885,161 _

~ 123,456,789 =1 (mod 2 - 1)



Two proofs

e Combinatorial
— ... counting things
» Algebraic
— ... Induction
* We'll consider only non-negative a

— ... the result for non-negative a can be extended to

negative integers
(tvy it using what we know of congruences!)



Counting necklaces
e Due to Solomon W. Golomb, 1956

e Basic idea: a” suggests we see how to fill p
buckets, where each is filled with one of a objects

a objects

N—
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p buckets



Strings of beads

 Each way of filling the buckets gives a different
sequence of p objects (“beads”)

- a” such sequences

5= 99 ® 9@
5= ® ® ® @@
5- 9 ® ® @



Strings of beads

e Now string the beads together...

@@ @ @@
— @@ @ @@
@@ @ @@



Strings of beads

e ... and join the ends to form “necklaces”




A necklace rotated...

e ... Is the same necklace

— Different strings can produce the same necklace when
the ends are joined




Two types of necklaces

» Containing beads of a single color




Two types of necklaces

» Containing beads of a single color

* Only one possible string

- G @@



Two types of necklaces

* Containing beads of different colors

e Many possible strings

-GG @
-GGG @
G- G- @



Lemma

e If pi1s a prime number and N is a necklace with at
least two colors, every rotation of N corresponds
to a different string

— ... L.e. there are exactly p different strings that form the
same necklace N



Proof of Lemma

 First, note that each string corresponds to

— a rotation of the necklace, and then...

— ... cutting 1t at a fixed point

O,

- & & @@ - -®



Proof of Lemma

 No more than p strings can give the same
necklace

— There are only p (say clockwise) rotations of the
necklace (that align the beads) before we loop back to
the original orientation

N—_ _
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Proof of Lemma

 Now we'll show that no less than p strings give the
same necklace

» Consider clockwise rotations by 1/p of a full circle

e Let £ be the minimum number of such rotations
before the original configuration is repeated

— Clearly, k<p (p rotations bring us back to the start)
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Proof of Claim

e Clam: k| p
e Proof:

- letp=qgk+r, with0<r<k (division 3lgovithw)

— ¢ Iterations, each of k rotations, restores the original
configuration (by definition of k)

- So do p rotations (full circle)
— ... therefore so do r rotations
— But r <k and we said £ was the minimum “period™!

— ... which 1s a contradiction, unless =0



Proof of Lemma

e Since k| p and k<p and p is prime, we must have
either
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Proof of Lemma

e Since k| p and k<p and p is prime, we must have
either

- k=1 (impossible if necklace has at least two colors)
or
— k:p

e This proves the lemma
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What we have so far

e Necklaces with one color

— a such strings (one for each color), therefore a such
necklaces

* Necklaces with multiple colors
— Each corresponds to p different strings

— a” — a strings of multiple colors, therefore
(@a”—a)/p such necklaces

= P | a’—a (can't have hal§ a3 necklace)

> a’=a (modp)  geD
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Another proof (algebraic)

e For a given prime p, we'll do induction on a

* Base case: Clear that 0” = 0 (mod p)

* Inductive hypothesis: a” = a (mod p)
 Consider (a+1)”

e By the Binomial Theorem,

p
1

p
2

(a+1)P=a’+|P|a” '+ P |a"*+|Pla" " +.. .+

3



Another proof (algebraic)

e For a given prime p, we'll do induction on a

* Base case: Clear that 0” = 0 (mod p)

* Inductive hypothesis: a” = a (mod p)
 Consider (a+1)”

e By the Binomial Theorem,

p
p—1

p
3

p
1

p
2

-1 —2 —3
(a+1)P=a’+|P|a’ +|P |a” “+| P |a’ " +..+ a+1

— All RHS terms except last & perhaps first are divisible by p



Another proof (algebraic)

e For a given prime p, we'll do induction on a

* Base case: Clear that 0” = 0 (mod p)

* Inductive hypothesis: a” = a (mod p)

° COnSider (a + 1) P Binowidl coefficient ( Ii ) S
P/ K(P- K, which 1s 3dlways an

. By the Binomial Theorem, wteger. 7is prime, so it isn't canceled

out b\j terwsS n +he denowinator

p
p—1

p
3

p
1

p
2

-1 —2 —3
(a+1)P=a’+|P|a’ +|P |a” “+| P |a’ " +..+ a+1

— All RHS terms except last & perhaps first are divisible by p
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 Therefore (a+1)” = a”+1 (mod p)
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Another proof (algebraic)

 Therefore (a+1)” = a”+1 (mod p)
e But by the inductive hypothesis, a” = a (mod p)

=aqg’+1 =a+1 (mod p) (Properties of congruence)
e Therefore (a+1)” = a+1 (modp)
(congruence iS transitive - provel!)

e Hence proved by induction
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