Fermat's Little Theorem

CS 2800: Discrete Structures, Spring 2015

Sid Chaudhuri

Not to be confused with...

Arithmeticorum Lib. II. 85
Arithmeticorum Lib. II. 85
$\begin{aligned} & \text { teruallo quadratorum, \& Canones iidem hic ctiam loc } \\ & \text { flumefl. } \\ & \text { QV \&S T I O V } 111 .\end{aligned}$
 P diuidere in duos quadratos. in duos quadratos. Ponatur primus $1 Q$. Oportet igitur 16 ${ }_{-1}$ Q. xquales effe quadrato. Fingo quadratum à numeris Fingo quadratum a numeris du tot vnitatum quot continet latus ipflus 16 efto à 2 N ${ }_{-}$4. ipfe igitur quadratus crit 4. ipre igitur quadratus crit $4 \mathrm{Q} .+16 .-16 \mathrm{~N}$. hac xqua Communisadiiciatur vtrimque defectus, \& à fimilibus aufedetectus, \& a fimilibus auferantur fimilia, fient S Q. aqua-
les 16 N. \& fit
Ni tur alter quadratorum \because alrer vcrò ".. \& vcriufquefummaef vero n. \& veriufque fumma eft
\because feu 16 . \& vterque quadratus

 Swá $\mu \epsilon \omega s$ ниac̃. סinvos d'eq rova'-

 áex ó réca'juros ísa्य swáuewr

 єंखо
QV生STIO IX.

Fermat's Last Theorem: $x^{n}+y^{n}=z^{n}$ has no integer solution for $n>2$

Recap: Modular Arithmetic

- Definition: $a \equiv b(\bmod m)$ if and only if $m \mid a-b$
- Consequences:
$-a \equiv b(\bmod m)$ iff $a \bmod m=b \bmod m$ (congruence \Leftrightarrow Same remainder)
- If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then
- $a+c \equiv b+d \quad(\bmod m)$
- $a c \equiv b d \quad(\bmod m)$
(congruences can sometimes be treated like equations)

Fermat's Little Theorem

- If p is a prime number, and a is any integer, then

$$
a^{p} \equiv a(\bmod p)
$$

Fermat's Little Theorem

- If p is a prime number, and a is any integer, then

$$
a^{p} \equiv a(\bmod p)
$$

- If a is not divisible by p, then

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

Fermat's Little Theorem

- Examples:

$$
\begin{aligned}
-21^{7} & \equiv 21(\bmod 7) \\
\ldots & \text { but } 21^{6} \equiv 1 \quad(\bmod 7)
\end{aligned}
$$

$$
-111^{12} \equiv 1(\bmod 13)
$$

$$
-123,456,789^{2^{57,885,161}-2} \equiv 1\left(\bmod 2^{57,885,161}-1\right)
$$

Two proofs

- Combinatorial
- ... counting things
- Algebraic
- ... induction
- We'll consider only non-negative a
- ... the result for non-negative a can be extended to negative integers
(try it using what we know of congruences!)

Counting necklaces

- Due to Solomon W. Golomb, 1956
- Basic idea: a^{p} suggests we see how to fill p buckets, where each is filled with one of a objects

Strings of beads

- Each way of filling the buckets gives a different sequence of p objects ("beads")
- a^{p} such sequences

$$
\begin{aligned}
& S_{1}=\oplus(\oplus) \\
& S_{2}=\text { - (1) © } \\
& S_{3}=\oplus \oplus(\oplus)
\end{aligned}
$$

Strings of beads

- Now string the beads together...

Strings of beads

- ... and join the ends to form "necklaces"

A necklace rotated...

- ... is the same necklace
- Different strings can produce the same necklace when the ends are joined

Two types of necklaces

- Containing beads of a single color

Two types of necklaces

- Containing beads of a single color

- Only one possible string

Two types of necklaces

- Containing beads of different colors

- Many possible strings

Lemma

- If p is a prime number and N is a necklace with at least two colors, every rotation of N corresponds to a different string
- ... i.e. there are exactly p different strings that form the same necklace N

Proof of Lemma

- First, note that each string corresponds to
- a rotation of the necklace, and then...
- ... cutting it at a fixed point

Proof of Lemma

- No more than p strings can give the same necklace
- There are only p (say clockwise) rotations of the necklace (that align the beads) before we loop back to the original orientation

Proof of Lemma

- Now we'll show that no less than p strings give the same necklace

Proof of Lemma

- Now we'll show that no less than p strings give the same necklace
- Consider clockwise rotations by $1 / p$ of a full circle

Proof of Lemma

- Now we'll show that no less than p strings give the same necklace
- Consider clockwise rotations by $1 / p$ of a full circle
- Let k be the minimum number of such rotations before the original configuration is repeated

Proof of Lemma

- Now we'll show that no less than p strings give the same necklace
- Consider clockwise rotations by $1 / p$ of a full circle
- Let k be the minimum number of such rotations before the original configuration is repeated
- Clearly, $k \leq p$ (p rotations bring us back to the start)

Proof of Lemma

- Now we'll show that no less than p strings give the same necklace
- Consider clockwise rotations by $1 / p$ of a full circle
- Let k be the minimum number of such rotations before the original configuration is repeated
- Clearly, $k \leq p$ (p rotations bring us back to the start)
- Claim: $k \mid p$

Proof of Claim

- Claim: $k \mid p$

Proof of Claim

- Claim: $k \mid p$
- Proof:
- Let $p=q k+r$, with $0 \leq r<k$
(division algorithm)

Proof of Claim

- Claim: $k \mid p$
- Proof:
- Let $p=q k+r$, with $0 \leq r<k$ (division algorithm)
- q iterations, each of k rotations, restores the original configuration (by definition of k)

Proof of Claim

- Claim: $k \mid p$
- Proof:
- Let $p=q k+r$, with $0 \leq r<k$ (division algorithm)
- q iterations, each of k rotations, restores the original configuration (by definition of k)
- So do p rotations (full circle)

Proof of Claim

- Claim: $k \mid p$
- Proof:
- Let $p=q k+r$, with $0 \leq r<k$ (division algorithm)
- q iterations, each of k rotations, restores the original configuration (by definition of k)
- So do p rotations (full circle)
- ... therefore so do r rotations

Proof of Claim

- Claim: $k \mid p$
- Proof:
- Let $p=q k+r$, with $0 \leq r<k \quad$ (division algorithm)
- q iterations, each of k rotations, restores the original configuration (by definition of k)
- So do p rotations (full circle)
- ... therefore so do r rotations
- But $r<k$ and we said k was the minimum "period"!

Proof of Claim

- Claim: $k \mid p$
- Proof:
- Let $p=q k+r$, with $0 \leq r<k \quad$ (division algorithm)
- q iterations, each of k rotations, restores the original configuration (by definition of k)
- So do p rotations (full circle)
- ... therefore so do r rotations
- But $r<k$ and we said k was the minimum "period"!
- ... which is a contradiction, unless $r=0$

Proof of Lemma

- Since $k \mid p$ and $k \leq p$ and p is prime, we must have either

Proof of Lemma

- Since $k \mid p$ and $k \leq p$ and p is prime, we must have either
- $k=1$ (impossible if necklace has at least two colors)

Proof of Lemma

- Since $k \mid p$ and $k \leq p$ and p is prime, we must have either
- $k=1$ (impossible if necklace has at least two colors)
or
$-k=p$

Proof of Lemma

- Since $k \mid p$ and $k \leq p$ and p is prime, we must have either
- $k=1$ (impossible if necklace has at least two colors)
or
- $k=p$
- This proves the lemma

What we have so far

What we have so far

- Necklaces with one color

What we have so far

- Necklaces with one color
- a such strings (one for each color), therefore a such necklaces

What we have so far

- Necklaces with one color
- a such strings (one for each color), therefore a such necklaces
- Necklaces with multiple colors

What we have so far

- Necklaces with one color
- a such strings (one for each color), therefore a such necklaces
- Necklaces with multiple colors
- Each corresponds to p different strings

What we have so far

- Necklaces with one color
- a such strings (one for each color), therefore a such necklaces
- Necklaces with multiple colors
- Each corresponds to p different strings
$-a^{p}-a$ strings of multiple colors, therefore $\left(a^{p}-a\right) / p$ such necklaces

What we have so far

- Necklaces with one color
- a such strings (one for each color), therefore a such necklaces
- Necklaces with multiple colors
- Each corresponds to p different strings
$-a^{p}-a$ strings of multiple colors, therefore $\left(a^{p}-a\right) / p$ such necklaces
$\Rightarrow p \mid a^{p}-a \quad$ (can't have half a necklace)

What we have so far

- Necklaces with one color
- a such strings (one for each color), therefore a such necklaces
- Necklaces with multiple colors
- Each corresponds to p different strings
$-a^{p}-a$ strings of multiple colors, therefore $\left(a^{p}-a\right) / p$ such necklaces
$\Rightarrow p \mid a^{p}-a \quad$ (can't have half a necklace)
$\Rightarrow a^{p} \equiv a(\bmod p)$ QED!

Another proof (algebraic)

Another proof (algebraic)

- For a given prime p, we'll do induction on a

Another proof (algebraic)

- For a given prime p, we'll do induction on a
- Base case: Clear that $0^{p} \equiv 0(\bmod p)$

Another proof (algebraic)

- For a given prime p, we'll do induction on a
- Base case: Clear that $0^{p} \equiv 0(\bmod p)$
- Inductive hypothesis: $a^{p} \equiv a(\bmod p)$

Another proof (algebraic)

- For a given prime p, we'll do induction on a
- Base case: Clear that $0^{p} \equiv 0(\bmod p)$
- Inductive hypothesis: $a^{p} \equiv a(\bmod p)$
- Consider $(a+1)^{p}$

Another proof (algebraic)

- For a given prime p, we'll do induction on a
- Base case: Clear that $0^{p} \equiv 0(\bmod p)$
- Inductive hypothesis: $a^{p} \equiv a(\bmod p)$
- Consider $(a+1)^{p}$
- By the Binomial Theorem,

$$
(a+1)^{p}=a^{p}+\binom{p}{1} a^{p-1}+\binom{p}{2} a^{p-2}+\binom{p}{3} a^{p-3}+\ldots+\binom{p}{p-1} a+1
$$

Another proof (algebraic)

- For a given prime p, we'll do induction on a
- Base case: Clear that $0^{p} \equiv 0(\bmod p)$
- Inductive hypothesis: $a^{p} \equiv a(\bmod p)$
- Consider $(a+1)^{p}$
- By the Binomial Theorem,

$$
(a+1)^{p}=a^{p}+\binom{p}{1} a^{p-1}+\binom{p}{2} a^{p-2}+\binom{p}{3} a^{p-3}+\ldots+\binom{p}{p-1} a+1
$$

- All RHS terms except last \& perhaps first are divisible by p

Another proof (algebraic)

- For a given prime p, we'll do induction on a
- Base case: Clear that $0^{p} \equiv 0(\bmod p)$
- Inductive hypothesis: $a^{p} \equiv a(\bmod p)$
- Consider $(a+1)^{p}$

Binomial coefficient $\binom{p}{k}$ is

$$
p!/ k!(p-k)!\text {, which is always an }
$$

- By the Binomial Theorem, integer. pis prime, so it isn't canceled out by terms in the denominator

$$
(a+1)^{p}=a^{p}+\binom{p}{1} a^{p-1}+\binom{p}{2} a^{p-2}+\binom{p}{3} a^{p-3}+\ldots+\binom{p}{p-1} a+1
$$

- All RHS terms except last \& perhaps first are divisible by p

Another proof (algebraic)

- Therefore $(a+1)^{p} \equiv a^{p}+1(\bmod p)$

Another proof (algebraic)

- Therefore $(a+1)^{p} \equiv a^{p}+1 \quad(\bmod p)$
- But by the inductive hypothesis, $a^{p} \equiv a(\bmod p)$

Another proof (algebraic)

- Therefore $(a+1)^{p} \equiv a^{p}+1 \quad(\bmod p)$
- But by the inductive hypothesis, $a^{p} \equiv a(\bmod p)$

$$
\Rightarrow a^{p}+1 \equiv a+1(\bmod p) \quad \text { (properties of congruence) }
$$

Another proof (algebraic)

- Therefore $(a+1)^{p} \equiv a^{p}+1 \quad(\bmod p)$
- But by the inductive hypothesis, $a^{p} \equiv a(\bmod p)$

$$
\Rightarrow a^{p}+1 \equiv a+1(\bmod p) \quad \text { (properties of congruence) }
$$

- Therefore $(a+1)^{p} \equiv a+1(\bmod p)$

Another proof (algebraic)

- Therefore $(a+1)^{p} \equiv a^{p}+1 \quad(\bmod p)$
- But by the inductive hypothesis, $a^{p} \equiv a(\bmod p)$

$$
\Rightarrow a^{p}+1 \equiv a+1(\bmod p) \quad \text { (properties of congruence) }
$$

- Therefore $(a+1)^{p} \equiv a+1 \quad(\bmod p)$
(congruence is transitive - prove!)

Another proof (algebraic)

- Therefore $(a+1)^{p} \equiv a^{p}+1 \quad(\bmod p)$
- But by the inductive hypothesis, $a^{p} \equiv a(\bmod p)$

$$
\Rightarrow a^{p}+1 \equiv a+1(\bmod p) \quad \text { (properties of congruence) }
$$

- Therefore $(a+1)^{p} \equiv a+1(\bmod p)$
(congruence is transitive - prove!)
- Hence proved by induction

