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Not to be confused with...

Fermat's Last Theorem:
xn + yn = zn has no integer solution for n > 2



Recap: Modular Arithmetic

● Definition: a ≡ b (mod m) if and only if m | a – b

● Consequences:

– a ≡ b (mod m) iff a mod m = b mod m

(Congruence ⇔ Same remainder)

– If a ≡ b (mod m) and c ≡ d (mod m), then
● a + c ≡ b + d (mod m)
● ac ≡ bd (mod m)

(Congruences can sometimes be treated like equations)
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Fermat's Little Theorem

● If p is a prime number, and a is any integer, then

a 
p  ≡  a   (mod p)

● If a is not divisible by p, then

a 
p – 1  ≡  1   (mod p)



Fermat's Little Theorem

● Examples:
– 217  ≡  21   (mod 7)

… but 216 ≢ 1   (mod 7)

– 11112  ≡  1   (mod 13)

– 123,456,789 2
57,885,161 − 2   ≡  1   (mod 257,885,161 − 1)



Two proofs

● Combinatorial
– … counting things

● Algebraic
– … induction

● We'll consider only non-negative a
– … the result for non-negative a can be extended to 

negative integers
(try it using what we know of congruences!)



Counting necklaces
● Due to Solomon W. Golomb, 1956
● Basic idea: a 

p suggests we see how to fill p 
buckets, where each is filled with one of a objects

p buckets

a objects



Strings of beads

● Each way of filling the buckets gives a different 
sequence of p objects (“beads”)
– a 

p such sequences

S
1
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2
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3
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⁝



Strings of beads

● Now string the beads together...

⁝



Strings of beads

● … and join the ends to form “necklaces”



A necklace rotated...

● … is the same necklace
– Different strings can produce the same necklace when 

the ends are joined

= =



Two types of necklaces

● Containing beads of a single color



Two types of necklaces

● Containing beads of a single color

● Only one possible string



Two types of necklaces

● Containing beads of different colors

● Many possible strings



Lemma

● If p is a prime number and N is a necklace with at 
least two colors, every rotation of N corresponds 
to a different string
– … i.e. there are exactly p different strings that form the 

same necklace N



Proof of Lemma

● First, note that each string corresponds to
– a rotation of the necklace, and then...
– … cutting it at a fixed point



Proof of Lemma

● No more than p strings can give the same 
necklace
– There are only p (say clockwise) rotations of the 

necklace (that align the beads) before we loop back to 
the original orientation
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Proof of Lemma

● Now we'll show that no less than p strings give the 
same necklace

● Consider clockwise rotations by 1/p of a full circle
● Let k be the minimum number of such rotations 

before the original configuration is repeated
– Clearly, k ≤ p   (p rotations bring us back to the start)

● Claim: k | p
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● Proof:
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– q iterations, each of k rotations, restores the original 
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Proof of Claim
● Claim: k | p

● Proof:
– Let p = qk + r, with 0 ≤ r < k      (division algorithm)

– q iterations, each of k rotations, restores the original 
configuration (by definition of k)

– So do p rotations (full circle)
– … therefore so do r rotations
– But r < k and we said k was the minimum “period”!
– … which is a contradiction, unless r = 0
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● Since k | p and k ≤ p and p is prime, we must have 
either
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● Since k | p and k ≤ p and p is prime, we must have 
either
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– k = p



Proof of Lemma

● Since k | p and k ≤ p and p is prime, we must have 
either
– k = 1  (impossible if necklace has at least two colors)

or
– k = p

● This proves the lemma



What we have so far



What we have so far
● Necklaces with one color



What we have so far
● Necklaces with one color

– a such strings (one for each color), therefore a such 
necklaces



What we have so far
● Necklaces with one color

– a such strings (one for each color), therefore a such 
necklaces

● Necklaces with multiple colors



What we have so far
● Necklaces with one color

– a such strings (one for each color), therefore a such 
necklaces

● Necklaces with multiple colors
– Each corresponds to p different strings



What we have so far
● Necklaces with one color

– a such strings (one for each color), therefore a such 
necklaces

● Necklaces with multiple colors
– Each corresponds to p different strings

– a p – a  strings of multiple colors, therefore 
(a p – a) / p   such necklaces



What we have so far
● Necklaces with one color

– a such strings (one for each color), therefore a such 
necklaces

● Necklaces with multiple colors
– Each corresponds to p different strings

– a p – a  strings of multiple colors, therefore 
(a p – a) / p   such necklaces

⇒  p | a p – a (can't have half a necklace)



What we have so far
● Necklaces with one color

– a such strings (one for each color), therefore a such 
necklaces

● Necklaces with multiple colors
– Each corresponds to p different strings

– a p – a  strings of multiple colors, therefore 
(a p – a) / p   such necklaces

⇒  p | a p – a

⇒  a p  ≡  a   (mod p) QED!

(can't have half a necklace)
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Another proof (algebraic)

● For a given prime p, we'll do induction on a
● Base case: Clear that 0 p  ≡  0   (mod p)

● Inductive hypothesis: a p  ≡  a   (mod p)

● Consider (a + 1) p

● By the Binomial Theorem,

– All RHS terms except last & perhaps first are divisible by p

(a+1)p=a p+( p1 )a p−1+(p2 )ap−2+( p3 )a p−3+...+( p
p−1)a+1

Binomial coefficient (  )  is

p!/ k!(p – k)!, which is always an 
integer. p is prime, so it isn't canceled 
out by terms in the denominator

p
k
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Another proof (algebraic)

● Therefore (a + 1) p  ≡  a p + 1   (mod p)

● But by the inductive hypothesis, a p  ≡  a   (mod p)

⇒ a p + 1  ≡  a + 1  (mod p)   (properties of congruence)

● Therefore  (a + 1) p  ≡  a + 1   (mod p)

   (congruence is transitive – prove!)

● Hence proved by induction
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