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Follow-up exercise

Read up on Euclid's Algorithm for
finding the Greatest Common Divisor of
two natural numbers



Congruence (modulo m)

Informally: Two integers are congruent modulo a
natural number m iIf and only If they have the
same remainder upon division by m

7 (mod 2)\

Eg. 3 =
9 = 99 (mod 10) NOT the definition!
117 = 1 (mod 10)



4am = 4pm (modulo 12h)
4pm Nov 12 = 4pm Nov 13 (modulo 24h)




1:25 =10:25 (modulo 60 mins)




300m = 9900m (modulo 400)




300m = 9900m (modulo 400)

Discavds absolute information (days, houvs, 13ps..

D!



The formal definition

e leta,bEZ, mE NT. a and b are said to be
congruent modulo m, written a = b (mod m), If and
only if a — b 1s divisible by m
— ..le.iff m|a—b  (Read as “p divides ")

— ... Le. Iff there i1s some integer k such that a — b = km

(Definition of | n : theve is sowme tnteger [ such that n = km)

» Note: this does not directly say a and b have the
same remainder upon division by m

— That i1s a consequence of the definition



Congruence < Same remainder

e Claim: a = b (mod m) iff a mod m = b mod m



Congruence < Same remainder

e Claim: a = b (mod m) iff a mod m = b mod m

e Proof:
(<)

Given: a mod m = b mod m



Congruence < Same remainder

e Claim: a = b (mod m) iff a mod m = b mod m

e Proof:
(=)
Given: a mod m = b mod m

= dgq,q,rsuchthata=qgm+r, b=gm+r



Congruence < Same remainder

e Claim: a = b (mod m) iff a mod m = b mod m

e Proof:
(=)
Given: a mod m = b mod m

= dgq,q,rsuchthata=qgm+r, b=gm+r

=a-b =gm—-—qgm=m(q,—q,)



Congruence < Same remainder

e Claim: a = b (mod m) iff a mod m = b mod m

* Proof:
(=)
Given: a mod m = b mod m
= dgq,q,rsuchthata=qgm+r, b=gm+r
=a-b =gm—-—qgm=m(q,—q,)

=m|a—>b



Congruence < Same remainder

e Claim: a = b (mod m) iff a mod m = b mod m

* Proof:
(=)
Given: a mod m = b mod m
= dgq,q,rsuchthata=qgm+r, b=gm+r
=a—-b =qgm-qgm=m(q,—q,)
=m|a—>b

= a = b (mod m)



Congruence < Same remainder

* Proof: (=) Given: a = b (mod m)



Congruence < Same remainder

* Proof: (=) Given: a = b (mod m)

Leta=gm+r, b=qgm+r,where 0<r,r <m



Congruence < Same remainder

Division Algovithw!
* Proof: (=) Given: a = b (mod m)

Leta=gm+r, b=qm+r,where 0<r,r <m



Congruence < Same remainder

Division Algovithw!
* Proof: (=) Given: a = b (mod m)

Leta=gm+r, b=qm+r,where 0<r,r <m

m|a—>b

=m|gm+r —qm-—r,



Congruence < Same remainder

Division Algovithw!
* Proof: (=) Given: a = b (mod m)

Leta=gm+r, b=qm+r,where 0<r,r <m
m|a—>b

=>m|gm-+tTr —qm-—r,

— m 7‘1—7/'2



Congruence < Same remainder

Division Algovithw!

* Proof: (=) Given: a = b (mod m)

Leta=gm+r, b=qm+r,where 0<r,r <m

m

— 14}

= m

a—>b
ExevciSe: Pvove that

q,m + r,—q,m—r,
\§ 3lb and 3fc, then a|(b - ¢)
ry—r,



Congruence < Same remainder

Division Algovithw!
* Proof: (=) Given: a = b (mod m)

Leta=gm+r, b=qm+r,where 0<r,r <m

m|a—>b
ExevciSe: Pvove that

=>m|gm-+tTr —qm-—r,
\§ alb and 3|c, then a|(b - ¢)
= m|r —r,

But 0 < r,r, < (m-1)




Congruence < Same remainder

Division Algovithw!
* Proof: (=) Given: a = b (mod m)

Leta=gm+r, b=qm+r,where 0<r,r <m

m|a—>b
ExevciSe: Pvove that

=>m|gm-+tTr —qm-—r,
\§ alb and 3|c, then a|(b - ¢)
= m|r —r,

But 0 < r,r, < (m-1)

=>r1—r2=0



Congruence < Same remainder

Division Algovithw!

* Proof: (=) Given: a = b (mod m)

Leta=gm+r, b=qm+r,where 0<r,r <m

m

— 14}

= m

a—>b
ExevciSe: Pvove that

q,m + r,—q,m—r,
\§ 3lb and 3fc, then a|(b - ¢)
ry—r,

But 0 < r,r, < (m-1)

=>r1—r2=0

= I =7,



Congruence < Same remainder

Division Algovithw!

* Proof: (=) Given: a = b (mod m)

Leta=gm+r, b=qm+r,where 0<r,r <m

m

— 14}

= m

a—>b
ExevciSe: Pvove that

q,m + r,—q,m—r,
\§ 3lb and 3fc, then a|(b - ¢)
ry—r,

But 0 < r,r, < (m-1)

=>r1—r2=0

= I =7,

= amod m = b mod m



Properties of congruence

e If a=b (mod m) and ¢ =d (mod m), then
—atc=b+d (modm)
- ac=bd (mod m)
Eg. 11=1(@mod10) = 11" =1"=1 (mod 10)
9=—-1(mod 10) = 97 =(-1)"" (mod 10)

799 = 49%97 = (~1)*.7 = -7 = 3 (mod 10)



a = b (mod m), ¢ = d (mod m)
=a+c=b+d(modm)



a = b (mod m), ¢ = d (mod m)
=a+c=b+d(modm)

Proof: a = b (mod m), ¢ = d (mod m)



a = b (mod m), ¢ = d (mod m)
=a+c=b+d(modm)

Proof: a = b (mod m), ¢ = d (mod m)

= m|a—-bandm|c—d



a = b (mod m), ¢ = d (mod m)
=a+c=b+d(modm)

Proof: a = b (mod m), ¢ = d (mod m)
= m|a—-bandm|c—d

= m|((a—b)+(c—d))




a = b (mod m), ¢ = d (mod m)
=a+c=b+d(modm)

Proof: a = b (mod m), ¢ = d (mod m)

= m|a—band m | C — Exevcise: Prove that

§ alb and 3lc, then 3|(b + c)
= m|((a—>b)+(c— /




a = b (mod m), ¢ = d (mod m)
=a+c=b+d(modm)

Proof: a = b (mod m), ¢ = d (mod m)

= m|a—band m | C — Exevcise: Prove that

= m|((a—b)+ (c— /’? alb and a|c, then a|(b + c)
= m ((a+c)—(b+d))




a = b (mod m), ¢ = d (mod m)
=a+c=b+d(modm)

Proof: a = b (mod m), ¢ = d (mod m)
= m|a—band m | C — ExevciSe: Pvove that

m | ((a—b)+ (c— /'\: alb and 3lc, then 3|(b + ¢)
m ((a+c)—(b+d))

a+c=b+d (modm)

R



a = b (mod m), ¢ = d (mod m)
= ac = bd (mod m)



a = b (mod m), ¢ = d (mod m)
= ac = bd (mod m)

Proof: a = b (mod m), ¢ = d (mod m)



a = b (mod m), ¢ = d (mod m)
= ac = bd (mod m)

Proof: a = b (mod m), ¢ = d (mod m)
= dr, r' such that

a=gm+tr b=gm+r
c=q'm+r d=qg' ' m+r



a = b (mod m), ¢ = d (mod m)
= ac = bd (mod m)

Proof: a=b (IIlOd M), c=d (mOd m) we Proved congvuence

= dr, r' such that / <> Same rewmaindeyr

a=qgm+tr b=gm+r
c=q'm+r d=qg'm+r



a = b (mod m), ¢ = d (mod m)
= ac = bd (mod m)

Proof: a=b (mOd M), c=d (mOd m) we Proved congvuence

= v, r' such that / < Sawe vemadindeyr
a=qgm+tr b=gm+r
c=q'm+r d=qg' ' m+r

= ac=qm-qg'm tgm-r tqg m-r trr
bd=qm-q'm +tqm-r'" +q'm-r +rr



a = b (mod m), ¢ = d (mod m)
= ac = bd (mod m)

Proof: a=b (mOd M), c=d (mOd m) we Proved congvuence

= v, r' such that / < Sawe vemadindeyr
a=qgm+tr b=gm+r
c=q'm+r d=qg' ' m+r

= ac=qm-qg'm tgm-r tqg m-r trr
bd=qm-q'm +tqm-r'" +q'm-r +rr

= ac—bd=m(...)



a = b (mod m), ¢ = d (mod m)
= ac = bd (mod m)

Proof: a = b (mod m), ¢ = d (mod m)

We proved congruence

= v, r' such that / < Sawe vemadindeyr
a=gm+tr b=gm+r
c=q'm+r d=qg' ' m+r

= ac=qm-qg'm tgm-r tqg m-r trr
bd=qm-q'm +tqm-r'" +q'm-r +rr
= ac—bd=m(...)

= ac = bd (mod m)



a = b (mod m), ¢ = d (mod m)
= ac = bd (mod m)

Proof: a=b (IIlOd M), c=d (mOd m) we Proved congvuence

= dr, r' such that / <> Same rewmaindeyr
a=qgm+tr b=gm+r
c=q'm+r d=qg' ' m+r

/

= ac=qm-qg'm tgm-r tqg m-r trr

/

bd=qm-q'm +tqm-r'" +q'm-r +rr
= ac—bd=m(...)
Note: But rv 1S not h general the

= ac = bd (mod m) 7 vemainder (Since it can be > m)
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