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Kleene's Theorem

● A language is regular, i.e. it can be defined by a 
regular expression, if and only if it is recognized by 
a finite automaton
– Regex has FA

● Relatively simple construction

– FA has regex
● Tricky to prove
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Regex → FA

● For every regular expression, there is a finite 
automaton that recognizes the same language

● We will construct an ε-NFA
– … which can be converted to an NFA
– … which can be converted to a DFA



Recap: NFAs with epsilon transitions

● Just like ordinary NFAs, but...
– Can “instantaneously” change state 
without reading an input symbol

– Valid transitions of this type are 
shown by arcs labeled 'ε'

– Note that ε does not suddenly 
become a member of the alphabet. 
Instead, we assume ε does not 
belong to any alphabet – it's a 
special symbol.
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Why ε-NFAs?
● Suitable for representing “or” relations
● E.g. L = { an | n ∈ N is divisible by 2 or 3 }

● … but they're equivalent to NFAs and DFAs
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can be reached from q following only ε-transitions
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ε-NFA to ordinary NFA

● The ε-closure of a state q is the set of states that 
can be reached from q following only ε-transitions
– The set includes q itself
– We'll denote the set ECLOSE(q)

ECLOSE(p) = ?
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ε-NFA to ordinary NFA

● The ε-closure of a state q is the set of states that 
can be reached from q following only ε-transitions
– The set includes q itself
– We'll denote the set ECLOSE(q)

ECLOSE(p) = { p, q
0
, r

0
 }
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ε-NFA to ordinary NFA

● Converting ε-NFA Nε to ordinary NFA N (short-
circuiting ε paths)

1. Make p an accepting state of N iff ECLOSE(p) 
contains an accepting state of Nε

2. Add an arc labeled a from p to q iff Nε has an arc 
labeled a from some state in ECLOSE(p) to q

3. Delete all arcs labeled ε
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Regular expression to ε-NFA

● Structural induction on regex
– Construct simple automata for base cases
– For every higher-order construction, construct 

equivalent ε-NFA from smaller ε-NFAs
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Kleene star

Regex: A*
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