Kleene's Theorem

CS 2800: Discrete Structures, Spring 2015

Sid Chaudhuri

Pumping Lemma: Piazza @720

Structural Induction: Piazza @744

Kleene's Theorem

- A language is regular, i.e. it can be defined by a regular expression, if and only if it is recognized by a finite automaton

Kleene's Theorem

- A language is regular, i.e. it can be defined by a regular expression, if and only if it is recognized by a finite automaton
- Regex has FA
- Relatively simple construction

Kleene's Theorem

- A language is regular, i.e. it can be defined by a regular expression, if and only if it is recognized by a finite automaton
- Regex has FA
- Relatively simple construction
- FA has regex
- Tricky to prove

Regex \rightarrow FA

- For every regular expression, there is a finite automaton that recognizes the same language

Regex \rightarrow FA

- For every regular expression, there is a finite automaton that recognizes the same language
- We will construct an ε-NFA

Regex \rightarrow FA

- For every regular expression, there is a finite automaton that recognizes the same language
- We will construct an ε-NFA
- ... which can be converted to an NFA

Regex \rightarrow FA

- For every regular expression, there is a finite automaton that recognizes the same language
- We will construct an ε-NFA
- ... which can be converted to an NFA
- ... which can be converted to a DFA

Recap: NFAs with epsilon transitions

- Just like ordinary NFAs, but...
- Can "instantaneously" change state without reading an input symbol
- Valid transitions of this type are shown by arcs labeled ' ε '
- Note that ε does not suddenly become a member of the alphabet. Instead, we assume ε does not belong to any alphabet - it's a special symbol.

Why ε-NFAs?

- Suitable for representing "or" relations
- E.g. $L=\left\{a^{n} \mid n \in \mathbf{N}\right.$ is divisible by 2 or 3$\}$

- ... but they're equivalent to NFAs and DFAs

ε-NFA to ordinary NFA

- The ε-closure of a state q is the set of states that can be reached from q following only ε-transitions

ε-NFA to ordinary NFA

- The ε-closure of a state q is the set of states that can be reached from q following only ε-transitions
- The set includes q itself

ε-NFA to ordinary NFA

- The ε-closure of a state q is the set of states that can be reached from q following only ε-transitions
- The set includes q itself
- We'll denote the set $\operatorname{ECLOSE}(q)$

ε-NFA to ordinary NFA

- The ε-closure of a state q is the set of states that can be reached from q following only ε-transitions
- The set includes q itself
- We'll denote the set $\operatorname{ECLOSE}(q)$
$\operatorname{ECLOSE}(p)=?$

ε-NFA to ordinary NFA

- The ε-closure of a state q is the set of states that can be reached from q following only ε-transitions
- The set includes q itself
- We'll denote the set $\operatorname{ECLOSE}(q)$
$\operatorname{ECLOSE}(p)=\left\{p, q_{0}, r_{0}\right\}$

$\operatorname{ECLOSE}(1)$?

A) $\{2,4\}$
B) $\{1,2,4\}$
C) $\{1,2,3,4\}$
D) $\{2,3,4\}$

$\operatorname{ECLOSE}(1)$?

A) $\{2,4\}$
B) $\{1,2,4\}$
C) $\{\mathbf{1 , 2}, \mathbf{3}, 4\}$
D) $\{2,3,4\}$

$\operatorname{ECLOSE}(1)$?

A) $\{2,4\}$
B) $\{1,2,4\}$
C) $\{1,2,3,4\}$
D) $\{2,3,4\}$

$\operatorname{ECLOSE}(1)$?

A) $\{2,4\}$
B) $\{1,2,4\}$
C) $\{\mathbf{1 , 2}, \mathbf{3}, 4\}$
D) $\{2,3,4\}$

$\operatorname{ECLOSE}(1)$?

A) $\{2,4\}$
B) $\{1,2,4\}$
C) $\{1,2,3,4\}$
D) $\{1,2,3,4,5,6\}$

$\operatorname{ECLOSE}(1)$?

A) $\{2,4\}$
B) $\{1,2,4\}$
C) $\{1,2,3,4\}$
D) $\{1,2,3,4,5,6\}$

$\operatorname{ECLOSE}(1)$?

A) $\{2,4\}$
B) $\{1,2,4\}$
C) $\{1,2,3,4\}$
D) $\{1,2,3,4,5,6\}$

$\operatorname{ECLOSE}(1)$?

A) $\{2,4\}$
B) $\{1,2,4\}$
C) $\{1,2,3,4\}$
D) $\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}\}$

$\operatorname{ECLOSE}(1)$?

A) $\{1\}$
B) $\{1,2,4\}$
C) $\{1,2,3,4\}$
D) $\{1,2,3,4,5,6\}$

$\operatorname{ECLOSE}(1)$?

A) $\{\mathbf{1}\}$
B) $\{1,2,4\}$
C) $\{1,2,3,4\}$
D) $\{1,2,3,4,5,6\}$

$\operatorname{ECLOSE}(1)$?

A) $\{1,2,3\}$
B) $\{1,2,4\}$
C) $\{1,2,3,4\}$
D) $\{1,2,3,4,5,6\}$

$\operatorname{ECLOSE}(1)$?

A) $\{1,2,3\}$
B) $\{1,2,4\}$
C) $\{1,2,3,4\}$
E) $\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}\}$
D) $\{1,2,3,4,5,6\}$

ε-NFA to ordinary NFA

- Converting ε-NFA N_{ε} to ordinary NFA N (shortcircuiting ε paths)

ε-NFA to ordinary NFA

- Converting ε-NFA N_{ε} to ordinary NFA N (shortcircuiting ε paths)

1. Make p an accepting state of N iff $\operatorname{ECLOSE}(p)$ contains an accepting state of N_{ε}

ε-NFA to ordinary NFA

- Converting ε-NFA N_{ε} to ordinary NFA N (shortcircuiting ε paths)

1. Make p an accepting state of N iff $\operatorname{ECLOSE}(p)$ contains an accepting state of N_{ε}
2. Add an arc labeled a from p to q iff N_{ε} has an arc labeled a from some state in $\operatorname{ECLOSE}(p)$ to q

ε-NFA to ordinary NFA

- Converting ε-NFA N_{ε} to ordinary NFA N (shortcircuiting ε paths)

1. Make p an accepting state of N iff $\operatorname{ECLOSE}(p)$ contains an accepting state of N_{ε}
2. Add an arc labeled a from p to q iff N_{ε} has an arc labeled a from some state in $\operatorname{ECLOSE}(p)$ to q
3. Delete all arcs labeled ε

Add an arc labeled a from p to q iff N_{ε} has an arc labeled a from some state in $\operatorname{ECLOSE}(p)$ to q

Add an arc labeled a from p to q iff N_{ε} has an arc labeled a from some state in $\operatorname{ECLOSE}(p)$ to q

Delete all arcs labeled ε

Regular expression to ε-NFA

- Structural induction on regex
- Construct simple automata for base cases
- For every higher-order construction, construct equivalent ε-NFA from smaller ε-NFAs

Empty set

Regex: \varnothing

Empty string

Regex: \&

Literal character

Regex: a

Concatenation

Regex: $A B$

Concatenation

Regex: $A B$

Concatenation

Regex: $A B$

NFA for $A B$

Alternation

Regex: $A \mid B$

Alternation

Regex: $A \mid B$

Alternation

Regex: $A \mid B$

NFA for $A \mid B$

Kleene star

Regex: A^{*}

Kleene star

Regex: A^{*}

Kleene star

Regex: A^{*}

NFA for A^{*}

