Nondeterministic Finite Automata and Regular Expressions

CS 2800: Discrete Structures, Spring 2015

Sid Chaudhuri

Recap: Deterministic Finite Automaton

- A DFA is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
- Q is a finite set of states
- Σ is a finite input alphabet (e.g. $\{0,1\}$)
- δ is a transition function $\delta: Q \times \Sigma \rightarrow Q$
- $q_{0} \in Q$ is the start/initial state
- $F \subseteq Q$ is the set of final/accepting states

$P=N P!!!$

A NON-deterministic finite automaton lets you try all possible choices in parallel. If ANY choice leads you to the treasure, the pirate can't harm you!

A non-deterministic finite automaton

A non-deterministic finite automaton

A non-deterministic finite automaton

An NFA accepts a string x if it can get to an accepting state on input x

A non-deterministic finite automaton

What language does this automaton accept?

A non-deterministic finite automaton

Answer: All strings ending with 1

Another NFA

What language does this automaton accept?

Another NFA

Answer: All strings with 1 in the penultimate place

Non-deterministic Finite Automaton

- An NFA is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$

Non-deterministic Finite Automaton

- An NFA is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
- Q is a finite set of states

Non-deterministic Finite Automaton

- An NFA is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
- Q is a finite set of states
$-\Sigma$ is a finite input alphabet (e.g. $\{0,1\}$)

Non-deterministic Finite Automaton

- An NFA is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
- Q is a finite set of states
- Σ is a finite input alphabet (e.g. $\{0,1\}$)
- δ is a transition function $\delta: Q \times \Sigma \rightarrow 2^{Q}$

Non-deterministic Finite Automaton

- An NFA is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
- Q is a finite set of states
only change
- Σ is a finite input alphabet (e.g. $\{0,1\}$ from DFAs
$-\delta$ is a transition function $\delta: Q \times \Sigma \rightarrow 2^{Q}$

Non-deterministic Finite Automaton

- An NFA is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
- Q is a finite set of states
only change
- Σ is a finite input alphabet (e.g. $\{0,1\}) ~ f r o m ~ D F A S$
- δ is a transition function $\delta: Q \times \Sigma \rightarrow 2^{Q}$
- $q_{0} \in Q$ is the start/initial state

Non-deterministic Finite Automaton

- An NFA is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
- Q is a finite set of states
only change
- Σ is a finite input alphabet (e.g. $\{0,1\}$ from DFAs
- δ is a transition function $\delta: Q \times \Sigma \rightarrow 2^{Q}$
- $q_{0} \in Q$ is the start/initial state
- $F \subseteq Q$ is the set of final/accepting states

Non-deterministic Finite Automaton

- An NFA accepts a string x if it can get to an accepting state on input x

Non-deterministic Finite Automaton

- An NFA accepts a string x if it can get to an accepting state on input x
- Think of it as trying many options in parallel, and hoping one path gets lucky

Non-deterministic Finite Automaton

- An NFA accepts a string x if it can get to an accepting state on input x
- Think of it as trying many options in parallel, and hoping one path gets lucky
- Transition f (state, symbol) $\mapsto \varnothing$ is possible

Non-deterministic Finite Automaton

- An NFA accepts a string x if it can get to an accepting state on input x
- Think of it as trying many options in parallel, and hoping one path gets lucky
- Transition f (state, symbol) $\mapsto \varnothing$ is possible
- ... the NFA treats this as a rejecting path (the string may still reach an accepting state by another path)

Non-deterministic Finite Automaton

- An NFA accepts a string x if it can get to an accepting state on input x
- Think of it as trying many options in parallel, and hoping one path gets lucky
- Transition f (state, symbol) $\mapsto \varnothing$ is possible
- ... the NFA treats this as a rejecting path (the string may still reach an accepting state by another path)
- A convenient shortcut for our "hell/black-hole" state

Non-deterministic Finite Automaton

- An NFA accepts a string x if it can get to an accepting state on input x
- Think of it as trying many options in parallel, and hoping one path gets lucky
- Transition f (state, symbol) $\mapsto \varnothing$ is possible
- ... the NFA treats this as a rejecting path (the string may still reach an accepting state by another path)
- A convenient shortcut for our "hell/black-hole" state
- Class convention: Draw all possible transitions for DFA. Not required for NFA (missing transitions lead to hell).

Non-deterministic Finite Automaton

- Every DFA is an NFA

Non-deterministic Finite Automaton

- Every DFA is an NFA
- If we're strict with our notation, we need to replace the transition
$f\left(\right.$ state $_{1}$, symbol $) \mapsto$ state $_{2}$ with $f\left(\right.$ state $_{1}$, symbol $) \mapsto\left\{\right.$ state $\left._{2}\right\}$

Non-deterministic Finite Automaton

- Every DFA is an NFA
- If we're strict with our notation, we need to replace the transition
$f\left(\right.$ state $_{1}$, symbol $) \mapsto$ state $_{2}$ with $f\left(\right.$ state $_{1}$, symbol $) \mapsto\left\{\right.$ state $\left._{2}\right\}$
- Every NFA can be simulated by a DFA

Non-deterministic Finite Automaton

- Every DFA is an NFA
- If we're strict with our notation, we need to replace the transition
$f\left(\right.$ state $_{1}$, symbol $) \mapsto$ state $_{2}$ with $f\left(\right.$ state $_{1}$, symbol $) \mapsto\left\{\right.$ state $\left._{2}\right\}$
- Every NFA can be simulated by a DFA
- ... i.e. they accept exactly the same language

Non-deterministic Finite Automaton

- Every DFA is an NFA
- If we're strict with our notation, we need to replace the transition
$f\left(\right.$ state $_{1}$, symbol $) \mapsto$ state $_{2}$ with $f\left(\right.$ state $_{1}$, symbol $) \mapsto\left\{\right.$ state $\left._{2}\right\}$
- Every NFA can be simulated by a DFA
- ... i.e. they accept exactly the same language
- Exponential blowup: if the NFA has n states, the DFA can require up to 2^{n} states

Thought for the Day \#1

Find an NFA with n states that can't be simulated by a DFA with less than 2^{n} states

Every NFA can be simulated by a DFA

Every NFA can be simulated by a DFA

NFA
(fragment)

Every NFA can be simulated by a DFA

NFA
(fragment)
DFA (fragment)

Every NFA can be simulated by a DFA

"Subset construction" Main idea: ONE state of DFA tracks current states of ALL evolving paths of NFA
(fragment)

DFA (fragment)

(This is merely illustrative - formal construction on following slides)

Every NFA can be simulated by a DFA

NFA

Equivalent DFA

Specification

States

Alphabet

Transition Function

Initial State

Accepting States

Every NFA can be simulated by a DFA

NFA

Specification
$\left(Q, \Sigma, \delta, q_{0}, F\right)$
$\left(2^{Q}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$

States

Alphabet

Transition Function

Initial State

Accepting States

Every NFA can be simulated by a DFA

NFA

Equivalent DFA

Specification
$\left(Q, \Sigma, \delta, q_{0}, F\right)$
$\left(2^{Q}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$

States
Q
2^{Q}

Alphabet

Transition Function

Initial State

Accepting States

Every NFA can be simulated by a DFA

NFA

Equivalent DFA

Specification
$\left(Q, \Sigma, \delta, q_{0}, F\right)$
$\left(2^{Q}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$

States

Alphabet
Q
Σ
Σ

Transition Function

Initial State

Accepting States

Every NFA can be simulated by a DFA

NFA

Equivalent DFA

Specification

$\left(Q, \Sigma, \delta, q_{0}, F\right)$
$\left(2^{Q}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$
States

Alphabet

Transition Function
δ

$$
\delta^{\prime}(S, a)=\bigcup_{s \in S} \delta(s, a)
$$

Initial State

Accepting States

Every NFA can be simulated by a DFA

NFA

Equivalent DFA

Specification
$\left(Q, \Sigma, \delta, q_{0}, F\right)$
$\left(2^{Q}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$
Q
Σ
δ

$$
\delta^{\prime}(S, a)=\bigcup_{s \in S} \delta(s, a)
$$

q_{0}

$$
q_{0}^{\prime}=\left\{q_{0}\right\}
$$

Accepting States

Every NFA can be simulated by a DFA

NFA

Specification

$\left(Q, \Sigma, \delta, q_{0}, F\right)$
Equivalent DFA

States

Alphabet

Transition Function
δ

$$
\delta^{\prime}(S, a)=\bigcup_{s \in S} \delta(s, a)
$$

Initial State
q_{0}

$$
q_{0}^{\prime}=\left\{q_{0}\right\}
$$

Accepting States
F
$F^{\prime}=\left\{S \in 2^{Q} \mid S \cap F \neq \varnothing\right\}$

Why NFAs?

Why NFAs?

- They can be way more compact than DFAs

Why NFAs?

- They can be way more compact than DFAs

NFA

Why NFAs?

- They can be way more compact than DFAs

NFA

Equivalent minimal DFA

Why NFAs?

- They can be way more compact than DFAs

NFA

Equivalent minimal DFA

- It's easier to directly convert regular expressions ("wildcard search" on steroids) to NFAs

Playing with regexes

- http://regex101.com/
- http://rubular.com/
- http://www.google.com/search?q=online+regex+tester

Regular expressions ("regex"-es) are defined by structural induction

(start with simple base expressions, construct more complicated ones recursively)

Empty set

$$
L(\varnothing)=\varnothing
$$

Empty string

$$
L(\boldsymbol{\varepsilon})=\{\varepsilon\}
$$

Literal character

$$
L(\mathbf{x})=\{x\}
$$

$$
\text { e.g. } L(\mathbf{1})=\{1\}, L(\mathbf{2})=\{2\}, L(\mathbf{a})=\{a\}
$$

Concatenation

$$
L(A B)=\{a b \mid a \in L(A), \mathrm{b} \in L(B)\}
$$

$$
\text { e.g. } L(\mathbf{1 2})=\{12\}, L(\mathbf{a a b b})=\{a a b b\}
$$

Concatenation

$$
L(A B)=\{a b \mid a \in L(A), \mathrm{b} \in L(B)\}
$$

$$
\begin{gathered}
\text { e.g. } L(\mathbf{1 2})=\{12\}, L(\mathbf{a a b b})=\{a a b b\}, \\
L(\mathbf{a \varepsilon})=?
\end{gathered}
$$

Concatenation

$$
L(A B)=\{a b \mid a \in L(A), \mathrm{b} \in L(B)\}
$$

$$
\begin{aligned}
\text { e.g. } L(\mathbf{1 2})= & \{12\}, L(\mathbf{a a b b})=\{a a b b\} \\
& L(\mathbf{a \varepsilon})=\{a\}
\end{aligned}
$$

Concatenation

$L(A B)=\{a b \mid a \in L(A), \mathrm{b} \in L(B)\}$

$$
\begin{gathered}
\text { e.g. } L(\mathbf{1 2})=\{12\}, L(\mathbf{a a b b})=\{a a b b\} \\
L(\mathbf{a} \mathbf{\varepsilon})=\{a\}, L(\mathbf{a} \varnothing)=?
\end{gathered}
$$

Concatenation

$$
L(A B)=\{a b \mid a \in L(A), \mathrm{b} \in L(B)\}
$$

$$
\begin{gathered}
\text { e.g. } L(\mathbf{1 2})=\{12\}, L(\mathbf{a a b b})=\{a a b b\}, \\
L(\mathbf{a \varepsilon})=\{a\}, L(\mathbf{a} \varnothing)=\varnothing
\end{gathered}
$$

Alternation

$$
L(A \mid B)=L(A) \cup L(B)
$$

$$
\text { e.g. } L(\mathbf{1} \mid \mathbf{2})=\{1,2\}, L(\mathbf{a a} \mid \mathbf{b} \mathbf{b})=\{a a, b b\}
$$

Alternation

$$
L(A \mid B)=L(A) \cup L(B)
$$

$$
\begin{gathered}
\text { e.g. } L(\mathbf{1} \mid \mathbf{2})=\{1,2\}, L(\mathbf{a a} \mid \mathbf{b} \mathbf{b})=\{a a, b b\}, \\
L(\mathbf{a} \mid \boldsymbol{\varepsilon})=?
\end{gathered}
$$

Alternation

$$
L(A \mid B)=L(A) \cup L(B)
$$

$$
\begin{aligned}
\text { e.g. } L(\mathbf{1} \mid \mathbf{2})= & \{1,2\}, L(\mathbf{a a} \mid \mathbf{b} \mathbf{b})=\{a a, b b\}, \\
& L(\mathbf{a} \mid \boldsymbol{\varepsilon})=\{a, \varepsilon\}
\end{aligned}
$$

Alternation

$$
L(A \mid B)=L(A) \cup L(B)
$$

$$
\begin{gathered}
\text { e.g. } L(\mathbf{1} \mid \mathbf{2})=\{1,2\}, L(\mathbf{a a} \mid \mathbf{b b})=\{a a, b b\}, \\
L(\mathbf{a} \mid \boldsymbol{\varepsilon})=\{a, \varepsilon\}, L(\mathbf{a} \mid \varnothing)=?
\end{gathered}
$$

Alternation

$$
L(A \mid B)=L(A) \cup L(B)
$$

$$
\begin{gathered}
\text { e.g. } L(\mathbf{1} \mid \mathbf{2})=\{1,2\}, L(\mathbf{a a} \mid \mathbf{b} \mathbf{b})=\{a a, b b\}, \\
L(\mathbf{a} \mid \boldsymbol{\varepsilon})=\{a, \varepsilon\}, L(\mathbf{a} \mid \varnothing)=\{a\}
\end{gathered}
$$

Kleene star

$$
\begin{gathered}
L\left(A^{*}\right)= \\
\{\varepsilon\} \cup\left\{x_{1} x_{2} \ldots x_{n} \mid n \in \mathbf{N}, x_{i} \in L(A)\right\} \\
\text { e.g. } L\left(\mathbf{a}^{*}\right)=\{\varepsilon, a, a a, a a a, a a a a, \ldots\}
\end{gathered}
$$

Kleene star

$$
\begin{gathered}
L\left(A^{*}\right)= \\
\{\varepsilon\} \cup\left\{x_{1} x_{2} \ldots x_{n} \mid n \in \mathbf{N}, x_{i} \in L(A)\right\} \\
\text { e.g. } L\left(\mathbf{a}^{*}\right)=\{\varepsilon, a, a a, a a a, a a a a, \ldots\}, \\
L\left((\mathbf{a b})^{*}\right)=?
\end{gathered}
$$

Kleene star

$$
\begin{gathered}
L\left(A^{*}\right)= \\
\{\varepsilon\} \cup\left\{x_{1} x_{2} \ldots x_{n} \mid n \in \mathbf{N}, x_{i} \in L(A)\right\} \\
\text { e.g. } L\left(\mathbf{a}^{*}\right)=\{\varepsilon, a, a a, a a a, a a a a, \ldots\}, \\
L\left((\mathbf{a b})^{*}\right)=\{\varepsilon, a b, a b a b, a b a b a b, \ldots\}
\end{gathered}
$$

Kleene star

$$
\begin{gathered}
L\left(A^{*}\right)= \\
\{\varepsilon\} \cup\left\{x_{1} x_{2} \ldots x_{n} \mid n \in \mathbf{N}, x_{i} \in L(A)\right\}
\end{gathered}
$$

$$
\begin{aligned}
\text { e.g. } L\left(\mathbf{a}^{*}\right)= & \{\varepsilon, a, a a, a a a, a a a a, \ldots\}, \\
L\left((\mathbf{a b})^{*}\right)= & \{\varepsilon, a b, a b a b, a b a b a b, \ldots\}, \\
& L\left((\mathbf{a} \mid \mathbf{b})^{*}\right)=?
\end{aligned}
$$

Kleene star

$$
\begin{gathered}
L\left(A^{*}\right)= \\
\{\varepsilon\} \cup\left\{x_{1} x_{2} \ldots x_{n} \mid n \in \mathbf{N}, x_{i} \in L(A)\right\} \\
\text { e.g. } L\left(\mathbf{a}^{*}\right)=\{\varepsilon, a, a a, a a a, a a a a, \ldots\} \\
L\left((\mathbf{a b})^{*}\right)=\{\varepsilon, a b, a b a b, a b a b a b, \ldots\} \\
L\left((\mathbf{a} \mid \mathbf{b})^{*}\right)=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, a b a, \ldots\}
\end{gathered}
$$

Kleene star

$$
\begin{gathered}
L\left(A^{*}\right)= \\
\{\varepsilon\} \cup\left\{x_{1} x_{2} \ldots x_{n} \mid n \in \mathbf{N}, x_{i} \in L(A)\right\} \\
\text { e.g. } L\left(\mathbf{a}^{*}\right)=\{\varepsilon, a, a a, a a a, a a a a, \ldots\}, \\
L\left((\mathbf{a b})^{*}\right)=\{\varepsilon, a b, a b a b, a b a b a b, \ldots\}, \\
L\left((\mathbf{a} \mid \mathbf{b})^{*}\right)=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, a b a, \ldots\}, \\
L\left(\mathbf{\varepsilon}^{*}\right)=?
\end{gathered}
$$

Kleene star

$$
\begin{gathered}
L\left(A^{*}\right)= \\
\{\varepsilon\} \cup\left\{x_{1} x_{2} \ldots x_{n} \mid n \in \mathbf{N}, x_{i} \in L(A)\right\} \\
\text { e.g. } L\left(\mathbf{a}^{*}\right)=\{\varepsilon, a, a a, a a a, a a a a, \ldots\}, \\
L\left((\mathbf{a b})^{*}\right)=\{\varepsilon, a b, a b a b, a b a b a b, \ldots\}, \\
L\left((\mathbf{a} \mid \mathbf{b})^{*}\right)=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, a b a, \ldots\}, \\
L\left(\varepsilon^{*}\right)=\{\varepsilon\}
\end{gathered}
$$

Kleene star

$$
\begin{gathered}
L\left(A^{*}\right)= \\
\{\varepsilon\} \cup\left\{x_{1} x_{2} \ldots x_{n} \mid n \in \mathbf{N}, x_{i} \in L(A)\right\} \\
\text { e.g. } L\left(\mathbf{a}^{*}\right)=\{\varepsilon, a, a a, a a a, a a a a, \ldots\}, \\
L\left((\mathbf{a b})^{*}\right)=\{\varepsilon, a b, a b a b, a b a b a b, \ldots\}, \\
L\left((\mathbf{a} \mid \mathbf{b})^{*}\right)=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, a b a, \ldots\}, \\
L\left(\mathbf{\varepsilon}^{*}\right)=\{\varepsilon\}, L\left(\varnothing^{*}\right)=?
\end{gathered}
$$

Kleene star

$$
\begin{gathered}
L\left(A^{*}\right)= \\
\{\varepsilon\} \cup\left\{x_{1} x_{2} \ldots x_{n} \mid n \in \mathbf{N}, x_{i} \in L(A)\right\} \\
\text { e.g. } L\left(\mathbf{a}^{*}\right)=\{\varepsilon, a, a a, a a a, a a a a, \ldots\}, \\
L\left((\mathbf{a b})^{*}\right)=\{\varepsilon, a b, a b a b, a b a b a b, \ldots\}, \\
L\left((\mathbf{a} \mid \mathbf{b})^{*}\right)=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, a b a, \ldots\}, \\
L\left(\mathbf{\varepsilon}^{*}\right)=\{\varepsilon\}, L\left(\varnothing^{*}\right)=\{\varepsilon\}
\end{gathered}
$$

