1 Lecture Summary

e We gave a brief overview of inductively defined sets, inductively defined
functions, and proofs by structural induction

e We showed how to prove that a machine is correct using induction on
strings

Note: I include regular expressions in the examples below, although we did
not cover them until the lecture after this one.

2 Inductively defined sets

To define a set inductively, you give a collection of rules for constructing elements
in the set from other elements; the set then consists of all elements that can be
constructed by applying the rules a finite number of times.

E.g. The set ¥* of strings is given by the two rules:
l.ee¥”
2. If x € ¥* and a € ¥ then za € ¥*

E.g. The set RE of regular expressions is given by the following rules:
1. ) e RE
2. e€ RE
3. ifa € ¥ then a € RE
4. if r1 and ro are elements of RE then riry € RE
5. if r; and ry are elements of RE then rq|ro € RE
6. if r € RE then r* € RE

E.g. The set N is given by the following rules:
1.0eN
2. fneNthenn+1eN

3 Inductively defined functions

If X is an inductively defined set, we can define a function f with domain X
recursively (I will use the terms ”inductive” and ”recursive” interchangably) by
explaining how to evaluate f for elements constructed with each rule. For the
rules that say something like “if x € X then za € X” we get to make use of the
definition of f(z) in our definition of f(za).

E.g. we can define the length function ¢: ¥* — N by



1. l(e) =

2. {(za) =1+ £(z) (note we can make use of ¢(x) when defining ¢(xa))
E.g. last lecture we defined 5:QxT* 5 Q inductively by

1. 0(g,€) =g

2. (g, za) = 6(6(q, ), a) (note we used é(q, z))

E.g. we can define the language function L : RE — 2% by

1. L®) =0

2. L(e) = {e}

3. L(a) = {a}

4. L(ryry) = {zy | ¢ € L(rl) and y € L(r2)} (note the use of L(ry) and
L(r2))

5. L(ri|re) = L(r1)UL(r2) (note use of L(ry) and L(r3))

6. L(r*) = {x1xoxs -y | 2; € L(r)} (note use of L(r))

E.g. we can define the "plus 3” function ps : N — N by
1. p3(0) =3
2. ps(n+1)=ps3(n)+1
E.g. we can define the ”binary interpretation” function b: {0,1}* — N by
1. b(e) =0
2. (a) b(z0) =2x*b(x)
(b) b(xl) =2xb(x) +1

(we implicitly use this function below when we say 7z represents n”; we really
mean b(z) = n)

4 Proofs by structural induction

If X is an inductively defined set, we can prove statements of the form “for all
x € X, P(x)” by giving a proof for each of the rules defining the set X. When
giving proofs for the rules that build a new element (e.g. xza) from a pre-existing
element (e.g. ), we can assume P(z) in the proof of P(za).

E.g. Claim: for all strings 2 € ¥*, ¢(x) > 0. Proof by induction on the structure
of z. We must consider two cases:

1. x is the empty string; we must show £(e) > 0.



2. z is of the form ya; we must show £(ya) > 0 but we may assume £(y) > 0

Case 1: by definition, £(e) = 0, so since 0 > 0, we have £(e) > 0.
Case 2: Assume that £(y) > 0. We must show ¢(ya) > 0. By definition,
£(ya) = 1+ £(y), which by our assumption is non-negative.

E.g. Claim: For all regular expressions r € RE, there exists an NFA N such
that L(r) = L(N)
Proof: see future lectures

5 Proof of correctness of an automata

In the previous lecture, we constructed an automata by associating a fact with
each state, and checking that each transition maintained the truth of the fact.

We considered the following problem: to draw an automata that accepts
any string that represents a multiple of 3 in binary. We derived the following
automata for the language (given here in table form; you are encouraged to
check this with your own picture!)

Transition function:

Set of states: State | Input | New state
State | Invariant @ 0 o
Qo x represents a multiple of 3 0 1 «
Q1 x represents 3k + 1 for some k @ 0 2
q2 x represents 3k + 2 for some k % L %
q2 0 @
q2 1 q2

We reasoned that the start state should be ¢p, because the empty string
represents 0, which is a multiple of 3. We alsu argued that the final state should
be qg, because we wish to accept exactly the strings that represent multiples of
3.

How could we prove that this machine does actually accept the correct lan-
guage?

Claim: L(M) = {z | = represents a multiple of 3 in binary}
Proof: 7

If we expand the definition of L(M), it becomes clear that induction on the
input might be a good approach:

Claim: for all x € X*, S(qo,x) = qo if and only if x represents a
multiple of 3 in binary.

To avoid writing that over and over again, let’s define P(z) to be that state-
ment:



Let P(z) be the statement “6(go, ) = qo if and only if z repre-
sents a multiple of 3 in binary”.

Claim: for all x € ¥*, P(z)

Proof: by induction on the structure of x. There are two cases:
(1) we must show P(e), and (2) We must show P(za), under the
assumption P(z).

Case 1: We must show that if 3(q0, €) = qo, then € represents a
multiple of 3. By definition, € represents 0, so this clearly holds.

Note: this ”base case” is exactly the reasoning we went through when de-
ciding where to put the initial state.

Case 2: Assume that (if S(C]o, x) = qo then x represents a multiple
of 3); we must show that if §(go,za) = go then za represents a
multiple of 3. To show this, let’s assume that S(qo,xa) = qo. We
must now show that xza represents a multiple of 3.

Unfortunately, we don’t know enough to finish the proof. The problem is
that we can only apply the inductive hypothesis if ) (qo, ) = qo, but that might
not be the case! For example, if x was the string “111” and a was the character
‘1’, then the inductive hypothesis would tell us that if g(qo,x) happened to
be qo, then z would be a multiple of 3, but that’s not helpful because in fact
5(q07 x) =1q1-

In our informal reasoning for this case, we would have said “since B (go,x) is
q1, we know that x represents 3k + 1 for some k, so 1 must represent 2 - (3k +
1) +1 = 6k + 3 which is a multiple of 3”.

We'd like to be able to use our inductive hypothesis to say “since ) (go,x) is
q1, © must represent 3k+1 for some k. In fact, we’d like our inductive hypothesis
to say that whenever we get to some state, the corresponding invariant holds.

Let’s try doing exactly this.

Let P(x) be the following statement:
(a) if S(qo, x) = qo, then x represents 3k for some k, AND
(b) if S(qo, x) = q1, then x represents 3k + 1 for some k, AND

(c) if 6(qo, ) = qo, then = represents 3k + 2 for some k.”

Claim: For all z € ¥*, P(x)
Proof: by induction on the structure of x. We must consider two
cases:

Case 1: We must show P(e). By definition of 8§, §(qo,€) = qo, s0
parts (b) and (c) are vacuously true. That is, they both say
“if (false) then (something)”, which is always true. Part (a) is
true because € represents 3 - 0.

Case 2: We must show P(za), assuming the inductive hypothesis
P(z). We must show all three parts of P(za).



(a) Suppose that S(qo, za) = qo. We want to show that xza rep-
resents 3k for some k. By looking at the definition of § and
0, we see that there are two possible ways for 5((]07 xa) = qo;
either

i. 9(g0,2) = qo and @ = 0. In this case, our induc-
tive hypothesis says that since 5(q0,x) = qp, that z
represents 3k for some k. Therefore, xa represents
2.3k = 6k = 3-(2k). Therefore za represents 3k
for some k. Or,

ii. 0(go,z) = g1 and @ = 1. In this case, our inductive
hypothesis says that since 5((10,510) = q1, that = rep-
resents 3k + 1 for some k. Therefore, xa represents
2-Bk+1)+1=6k+3=3-(k+1). Therefore za
represents 3k for some k.

In both cases we have shown that xa represents 3k for some
k, which is what was required for part (a).

(b) Suppose that 6(qo,za) = q1. We want to show that za
represents 3k + 1 for some k. Again the definition of )
and § shows us that there are two ways for this to happen,
namely,

i. 0(go,z) = go and a = 1. In this case, the inductive
hypothesis says [completion of this case left as ex-
ercise] and therefore xa represents 3k + 1 for some k.
Or,

ii. d(qo,x) = g2 and a = 0. [left as exercise]
In both cases we have shown that xa represents 3k + 1 for
some k, which is what was required for part (b).

(c) [this part is left as an exercise]

Since we have shown parts (a), (b), and (c) of P(za) hold, we
conclude that P(za) holds.

Since we have shown P(e) and P(za), we conclude that for any
string =, P(x) holds.

And the proof works out! I've left some of the details to you; I encourage
you to work them out to make sure you see what’s going on. Also note that
this proof is just a careful encoding of the informal reaonsing we did as we were
designing the machine in the first place. You’ll find that the complete proof has
6 sub-cases in the inductive step; one for each of the 6 transitions in the machine,
and that the proofs of each of these subcases is exactly like the reasoning we
did while drawing the corresponding transition.

Although this proof has lots of cases and details, it follows a very simple
structure. The key ideas are:

1. for each state ¢, write down a fact that you know about z if S(qo, ) =q.



2. Combine all of these facts into P(z)

3. Do an inductive proof of P(x). You'll find that this will force you to check
that every possible transition is correct.



