
1 Lecture summary

• We showed that even a computational model as powerful as Python has
languages it cannot compute

• We discussed inductive definitions and defined delta-hat

• We talked about the idea that when constructing automata, it is helpful
to write down a fact for every state. This helps you come up with the
machine and also prove it is correct.

2 Noncomputability

• We defined a spec as a language, i.e. a set of strings

• We said that a program satisfies a spec L if it outputs “yes” on every
string in the language L and halts and outputs “no” on any string not in
L

(Technical Note: this is a slightly different definition of “satisfying a spec”
than what I gave in class; in 4810 you would learn that this definition is
“decides” while the other definition is “recognizes”; the halting problem
given below is recognizable but not decidable; all of this is outside the
scope of this course, but feel free to ask if curious)

• Claim: there are specs that don’t have programs that satisfy them.

• Proof: the set of specs is uncountable, but the set of programs is a subset
of the set of strings, which is countable. Therefore there cannot be a
surjection from the set of programs to the set of strings.

• Example of non-computable spec: “halting problem”

HP = {x | if interpreted as a python program, x doesn’t run forever}

• Idea behind proof that HP is noncomputable: if HP was computable,
there would be a program P that decides it. Is the following program in
HP?

def diabolical(x):

if P(diabolical) == "yes":

while True: pass # (run forever)

else:

print "no"

1



3 Inductive definitions

We can define the set of strings Σ∗ as follows:

1. the empty string ε is in Σ∗

2. if x is in Σ∗ and a is in Σ then xa ∈ Σ∗

3. strings formed using rules 1 and 2 are the only strings in Σ∗

This formalizes the idea that there are two kinds of strings in the world:
empty strings, and strings of the form xa.

Using this idea, we can define a function f inductively by specifying its
output on the two kinds of strings. While defining f(xa), we can assume we’ve
already defined f(x). In this sense these definitions are inductive or recursive.

4 Definition of delta-hat

The transition function for a DFA is a function

δ : Q× Σ→ Q

This means it only tells us how to process a single character. It is useful to
define an extended transition function that processes a whole string. Just as
δ(q, a) tells where the machine transitions from state q on input a, δ̂(q, x) tells
us where the machine transitions to after processing the whole string x starting
from state q. It is defined inductively/recursively as follows:

δ̂ : Q× Σ∗ → Q

δ̂ : (q, ε) 7→ q

δ̂ : (q, xa) 7→ δ(δ − hat(q, x), a)

5 Associating facts with states

When designing a DFA, it is useful to write down a fact that you know about
the input if processing that input lands you in that state.

Example 1: networking. In the initial state I know that there is no con-
nection. After receiving a ”CONNECT” message, I know that someone wants
to open a connection. After receiving an ”ACKNOWLEGEMENT” message I
then know that the session is established. A ”DATA” message keeps me in the
same state, and a CLOSE message returns me to the initial state.

2



Example 2: Suppose we wanted to create a machine to recognize binary
strings that are multiples of 3. The important facts about binary for this ex-
ample are:

• the empty string represents 0

• if x represents n, then x0 represents 2n

• if x represents n, then x1 represents 2n+ 1

For example: 1101 represents 13 because 110 represents 6 and 2 · 6 + 1 = 13.
It is not clear how to build such a machine. We’d like to know that if we’re

in the final state, then x is a multiple of 3. So we can try creating a state q0
that represents the fact ”x is a multiple of 3”.

The starting state is where we end up after processing the empty string. In
this case, we know that ε represents 0, which is a multiple of 3, so we can start
in q0.

We’re not done, because we haven’t written transitions for all states on all
characters. Let’s consider them. What happens if δ̂(q0, x) = q0 and we see a

0? Well, since δ̂(q, x) = q0, we know x represents a multiple of 3. Lets say x is
3k. Then x0 represents 2x which is 2 · (3k) which is itself a multiple of 3. So

δ̂(q0, x0) should be q0; this means δ(q0, 0) should be 0.
If we see a 1 on the other hand, then we have 6k + 1, so we shouldn’t

transition to q0. So let’s create a new state q1. One way we might describe this
state is by saying that if δ̂(q0, x) = q1 then x represents a multiple of 3 plus 1
(i.e. x represents 3k + 1 for some k)

Continuing this process yields a machine with 3 states. I encourage you to
finish it yourself.

3


