1

2

Lecture summary

e We showed that even a computational model as powerful as Python has

languages it cannot compute
We discussed inductive definitions and defined delta-hat

We talked about the idea that when constructing automata, it is helpful
to write down a fact for every state. This helps you come up with the
machine and also prove it is correct.

Noncomputability

We defined a spec as a language, i.e. a set of strings

We said that a program satisfies a spec L if it outputs “yes” on every
string in the language L and halts and outputs “no” on any string not in
L

(Technical Note: this is a slightly different definition of “satisfying a spec”
than what I gave in class; in 4810 you would learn that this definition is
“decides” while the other definition is “recognizes”; the halting problem

given below is recognizable but not decidable; all of this is outside the
scope of this course, but feel free to ask if curious)

Claim: there are specs that don’t have programs that satisfy them.

Proof: the set of specs is uncountable, but the set of programs is a subset
of the set of strings, which is countable. Therefore there cannot be a
surjection from the set of programs to the set of strings.

Example of non-computable spec: “halting problem”

HP = {z | if interpreted as a python program, z doesn’t run forever}

Idea behind proof that HP is noncomputable: if HP was computable,
there would be a program P that decides it. Is the following program in
HP?

def diabolical(x):

if P(diabolical) == "yes":

while True: pass # (run forever)
else:

print "no"



3 Inductive definitions
We can define the set of strings ¥* as follows:

1. the empty string € is in X*
2. if x isin ¥* and a is in ¥ then xa € ¥*

3. strings formed using rules 1 and 2 are the only strings in »*

This formalizes the idea that there are two kinds of strings in the world:
empty strings, and strings of the form za.

Using this idea, we can define a function f inductively by specifying its
output on the two kinds of strings. While defining f(xza), we can assume we've
already defined f(z). In this sense these definitions are inductive or recursive.

4 Definition of delta-hat

The transition function for a DFA is a function

§:QxT—Q

This means it only tells us how to process a single character. It is useful to
define an extended transition function that processes a whole string. Just as
6(g, a) tells where the machine transitions from state ¢ on input a, 6(¢, z) tells
us where the machine transitions to after processing the whole string x starting
from state g. It is defined inductively/recursively as follows:

S

QX Xk —=Q

(g, €) > q
: (g, za) — §(6 — hat(q,x), a)

Sy O

5 Associating facts with states

When designing a DFA, it is useful to write down a fact that you know about
the input if processing that input lands you in that state.

Example 1: networking. In the initial state I know that there is no con-
nection. After receiving a ?CONNECT” message, I know that someone wants
to open a connection. After receiving an ”ACKNOWLEGEMENT” message 1
then know that the session is established. A "DATA” message keeps me in the
same state, and a CLOSE message returns me to the initial state.



Example 2: Suppose we wanted to create a machine to recognize binary
strings that are multiples of 3. The important facts about binary for this ex-
ample are:

e the empty string represents 0
e if x represents n, then z0 represents 2n

e if x represents n, then x1 represents 2n + 1

For example: 1101 represents 13 because 110 represents 6 and 2-6 + 1 = 13.

It is not clear how to build such a machine. We’d like to know that if we’re
in the final state, then = is a multiple of 3. So we can try creating a state qq
that represents the fact "x is a multiple of 3”.

The starting state is where we end up after processing the empty string. In
this case, we know that e represents 0, which is a multiple of 3, so we can start
in qq.

We’re not done, because we haven’t written transitions for all states on all
characters. Let’s consider them. What happens if g(qo,x) = qp and we see a
07 Well, since ) (¢, ) = qo, we know x represents a multiple of 3. Lets say x is
3k. Then 20 represents 22 which is 2 - (3k) which is itself a multiple of 3. So
S(qO, 20) should be go; this means §(q0,0) should be 0.

If we see a 1 on the other hand, then we have 6k + 1, so we shouldn’t
transition to gp. So let’s create a new state ¢;. One way we might describe this
state is by saying that if 5((]07 x) = ¢ then x represents a multiple of 3 plus 1
(i.e. z represents 3k + 1 for some k)

Continuing this process yields a machine with 3 states. I encourage you to
finish it yourself.



