1 Lecture summary

- We showed that even a computational model as powerful as Python has languages it cannot compute
- We discussed inductive definitions and defined delta-hat
- We talked about the idea that when constructing automata, it is helpful to write down a fact for every state. This helps you come up with the machine and also prove it is correct.

2 Noncomputability

- We defined a spec as a language, i.e. a set of strings
- We said that a program satisfies a spec L if it outputs "yes" on every string in the language L and halts and outputs "no" on any string not in L
(Technical Note: this is a slightly different definition of "satisfying a spec" than what I gave in class; in 4810 you would learn that this definition is "decides" while the other definition is "recognizes"; the halting problem given below is recognizable but not decidable; all of this is outside the scope of this course, but feel free to ask if curious)
- Claim: there are specs that don't have programs that satisfy them.
- Proof: the set of specs is uncountable, but the set of programs is a subset of the set of strings, which is countable. Therefore there cannot be a surjection from the set of programs to the set of strings.
- Example of non-computable spec: "halting problem"
$H P=\{x \mid$ if interpreted as a python program, x doesn't run forever $\}$
- Idea behind proof that $H P$ is noncomputable: if HP was computable, there would be a program P that decides it. Is the following program in $H P$?

```
def diabolical(x):
    if P(diabolical) == "yes":
        while True: pass # (run forever)
    else:
        print "no"
```


3 Inductive definitions

We can define the set of strings Σ^{*} as follows:

1. the empty string ϵ is in Σ^{*}
2. if x is in Σ^{*} and a is in Σ then $x a \in \Sigma^{*}$
3. strings formed using rules 1 and 2 are the only strings in Σ^{*}

This formalizes the idea that there are two kinds of strings in the world: empty strings, and strings of the form $x a$.

Using this idea, we can define a function f inductively by specifying its output on the two kinds of strings. While defining $f(x a)$, we can assume we've already defined $f(x)$. In this sense these definitions are inductive or recursive.

4 Definition of delta-hat

The transition function for a DFA is a function

$$
\delta: Q \times \Sigma \rightarrow Q
$$

This means it only tells us how to process a single character. It is useful to define an extended transition function that processes a whole string. Just as $\delta(q, a)$ tells where the machine transitions from state q on input a, $\hat{\delta}(q, x)$ tells us where the machine transitions to after processing the whole string x starting from state q. It is defined inductively/recursively as follows:

$$
\begin{aligned}
& \hat{\delta}: Q \times \Sigma * \rightarrow Q \\
& \hat{\delta}:(q, \epsilon) \mapsto q \\
& \hat{\delta}:(q, x a) \mapsto \delta(\delta-\operatorname{hat}(q, x), a)
\end{aligned}
$$

5 Associating facts with states

When designing a DFA, it is useful to write down a fact that you know about the input if processing that input lands you in that state.

Example 1: networking. In the initial state I know that there is no connection. After receiving a "CONNECT" message, I know that someone wants to open a connection. After receiving an "ACKNOWLEGEMENT" message I then know that the session is established. A "DATA" message keeps me in the same state, and a CLOSE message returns me to the initial state.

Example 2: Suppose we wanted to create a machine to recognize binary strings that are multiples of 3 . The important facts about binary for this example are:

- the empty string represents 0
- if x represents n, then $x 0$ represents $2 n$
- if x represents n, then $x 1$ represents $2 n+1$

For example: 1101 represents 13 because 110 represents 6 and $2 \cdot 6+1=13$.
It is not clear how to build such a machine. We'd like to know that if we're in the final state, then x is a multiple of 3 . So we can try creating a state q_{0} that represents the fact " x is a multiple of 3 ".

The starting state is where we end up after processing the empty string. In this case, we know that ϵ represents 0 , which is a multiple of 3 , so we can start in q_{0}.

We're not done, because we haven't written transitions for all states on all characters. Let's consider them. What happens if $\hat{\delta}\left(q_{0}, x\right)=q_{0}$ and we see a 0 ? Well, since $\hat{\delta}(q, x)=q_{0}$, we know x represents a multiple of 3 . Lets say x is $3 k$. Then $x 0$ represents $2 x$ which is $2 \cdot(3 k)$ which is itself a multiple of 3 . So $\hat{\delta}(q 0, x 0)$ should be q_{0}; this means $\delta(q 0,0)$ should be 0 .

If we see a 1 on the other hand, then we have $6 k+1$, so we shouldn't transition to q_{0}. So let's create a new state q_{1}. One way we might describe this state is by saying that if $\hat{\delta}\left(q_{0}, x\right)=q_{1}$ then x represents a multiple of 3 plus 1 (i.e. x represents $3 k+1$ for some k)

Continuing this process yields a machine with 3 states. I encourage you to finish it yourself.

