
1 Lecture summary

• We proved that DFA’s find it hard to count (as proposed in the last lecture)

• We generalized the proof to state and prove the pumping lemma

• We used the pumping lemma to prove that {0n1n | n ∈ N} is not DFA-
recognizable

2 DFAs find it hard to count

We claim that any machine that recognizes the language {1c} must have at least
c states.

Important note: the language {1c} is different from {1c | c ∈ N}.

Important note: a machine only recognizes a language L if

• it says yes on all inputs in L

• AND: it says no on all inputs not in L

In particular, although the machine that recognizes all strings has only one
state, and does “recognize” every string in 1c, it does not “recognize” {1c},
because it also accepts other strings (such as 1(c+1))

Proof of claim: Proof by contradiction. Suppose that M recognizes L and
M has fewer than c states. While processing the string 1c, M passes through
states q0, q1, q2, . . . , qc. There are (c+ 1) such states, but there are fewer than
c states in M , so the same state must be repeated twice in the sequence, i.e.
qi = qj for some i and j.

This means there is a loop; if we add an extra (j − i) ‘1’s to the string, it
will still be accepted, it will just traverse the loop an extra time. Therefore
1(c+(j−i)) is in the language of M , which contradicts the fact that L(M) = {1c}

Therefore, there is no machine having fewer than c states that recognizes
{1c}.

3 The pumping lemma

We can use the same kind of proof technique to prove that certain languages
cannot be recognized by any machine. The main tool for doing this is called
the pumping lemma.
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Claim (pumping lemma): If M is a DFA with n states, and x ∈ L(M), and
|x| > n, then there exist strings u, v, and w such that

1. uvw = x

2. |v| ≥ 1

3. |uv| ≤ n

4. for all c, uvcw is in L(M)

Proof is below.

4 Example using the pumping lemma

Claim: the language {0n1n|n ∈ N} is not DFA-recognizable.
Proof: by contradiction. Suppose there exists a DFA M that recognizes

L. Let k be the number of states of M . Since L = L(M), the string 0k1k is
recognized by M . Since |0k1k| > k, we can apply the pumping lemma to find
some u, v, and w such that 0k1k = uvw, and satisfying the other properties
given by the pumping lemma.

Since |uv| <= k, we know that v must only contain ‘0’s. Therefore, if we
pump v up, we have uv2w = 0k+|v|1k, which we are guaranteed is in L(M).
But this string is not in L, since it has more ‘0’s than ‘1’s. This contradicts the
assumption that L = L(M), and concludes the proof of the claim.

5 Proof of pumping lemma

Consider the first n + 1 states traversed while M processes x: q0, q1, . . . , qn.
Since there are n+1 of them, and M has only n states, we must have qi = qj

for some i 6= j.
Let

• u be the first i characters of x.

• v be the next (j − i) characters of x.

• w be the last (|x| − j) characters of x.

Then clearly x = uvw.
Moreover, |v| ≥ 1 since j 6= i.
In addition, |uv| ≤ n since |uv| = j ≤ n.
Finally, while processing uvcw, M will traverse the states

q0 q1 · · · qi−1 qi · · · (qj = qi) · · · (qj = qi) · · · qj︸ ︷︷ ︸
c times

qj+1 · · · q|x|

and will therefore end up in q|x|. Since x was accepted, q|x| must be an
accepting state, so uvcw will be accepted.
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