Finite Automata

CS 2800: Discrete Structures, Spring 2015

Sid Chaudhuri

clDOCTYPE html> chtmlid="home-layout"> chtmlid="home-layout"</home-layout"</home-layout"</home-layout"</home-layout"</home-layout"</home-layout"</home-layout"</home-layout"</home

A simplified model

A simplified model

A general-purpose computer

A general-purpose computer

Church-Turing Thesis: Any "effective/mechanical/real-world" calculation can be carried out on a Turing machine

Alan Turing, 1912 – 1954

A simple "computer"

(Binary input)

In general, on what binary strings does this DFA return Yes?

Ans: All strings with an even number of 1's

• A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

• A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

– Q is a finite set of states

- A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$
 - Q is a finite set of states
 - Σ is a finite input alphabet (e.g. $\{0, 1\}$)

- A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$
 - Q is a finite set of states
 - Σ is a finite input alphabet (e.g. $\{0, 1\}$)
 - δ is a transition function $\delta: Q \times \Sigma \to Q$

- A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$
 - Q is a finite set of states
 - Σ is a finite input alphabet (e.g. $\{0, 1\}$)
 - δ is a transition function $\delta: Q \times \Sigma \to Q$
 - $q_0 \in Q$ is the start/initial state

- A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$
 - Q is a finite set of states
 - Σ is a finite input alphabet (e.g. $\{0, 1\}$)
 - δ is a transition function $\delta: Q \times \Sigma \to Q$
 - $q_0 \in Q$ is the start/initial state
 - $F \subseteq Q$ is the set of final/accepting states

Answer: No strings

Answer: All strings

Answer: Strings of length 1

What does this DFA accept? Hell (any (any symbol) symbol) q_0 q_1 q_{2} (any symbol)

Answer: Strings of length 1

Answer: Strings containing only 1's

Answer: Strings containing no two consecutive 1's

• Given alphabet Σ , a language L is a set of strings over the alphabet, i.e. $L \subseteq \Sigma^*$

• Given alphabet Σ , a language L is a set of strings over the alphabet, i.e. $L \subseteq \Sigma^*$ Set of all possible strings over Σ

• We say a language L is accepted/recognized by a DFA M, if M accepts input string $x \in \Sigma^*$ if and only if $x \in L$

• Given alphabet Σ , a language L is a set of strings over the alphabet, i.e. $L \subseteq \Sigma^*$ Set of all possible

strings over Σ

• Given alphabet Σ , a language L is a set of strings over the alphabet, i.e. $L \subseteq \Sigma^*$ Set of all possible strings over Σ

• We say a language L is accepted/recognized by a DFA M, if M accepts input string $x \in \Sigma^*$ if and only if $x \in L$

Answer: Only the string 1

Answer: Only the string 11

DFA's find it difficult to count

• A DFA that recognizes the language $\{1^c\}$ (the single string of c 1's) must have at least c states

DFA's find it difficult to count

- A DFA that recognizes the language $\{1^c\}$ (the single string of c 1's) must have at least c states
 - The parent alphabet is irrelevant (but must of course contain 1)

(Proof discussion to be completed next class)