Finite Automata

CS 2800: Discrete Structures, Spring 2015

Sid Chaudhuri

A simplified model

Machine

A simplified model

an alphabet Σ, e.g. $\{0,1\}$

A general-purpose computer

A general-purpose computer

A general-purpose computer

String

 String

Church-Turing Thesis: Any "effective/mechanical/real-world" calculation can be carried out on a Turing machine

Alan Turing, 1912-1954

A simple "computer"

An example

An example

(Binary input)

An example

Input: 01001

An example

Input: 01001
Output: Yes!

An example

In general, on what binary strings does this DFA return Yes?

An example

Ans: All strings with an even number of 1's

Deterministic Finite Automaton

- A DFA is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$

Deterministic Finite Automaton

- A DFA is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
- Q is a finite set of states

Deterministic Finite Automaton

- A DFA is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
- Q is a finite set of states
- Σ is a finite input alphabet (e.g. $\{0,1\}$)

Deterministic Finite Automaton

- A DFA is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
- Q is a finite set of states
- Σ is a finite input alphabet (e.g. $\{0,1\}$)
- δ is a transition function $\delta: Q \times \Sigma \rightarrow Q$

Deterministic Finite Automaton

- A DFA is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
- Q is a finite set of states
- Σ is a finite input alphabet (e.g. $\{0,1\}$)
- δ is a transition function $\delta: Q \times \Sigma \rightarrow Q$
- $q_{0} \in Q$ is the start/initial state

Deterministic Finite Automaton

- A DFA is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
- Q is a finite set of states
- Σ is a finite input alphabet (e.g. $\{0,1\}$)
- δ is a transition function $\delta: Q \times \Sigma \rightarrow Q$
- $q_{0} \in Q$ is the start/initial state
- $F \subseteq Q$ is the set of final/accepting states

What does this DFA accept?

What does this DFA accept?

Answer: No strings

What does this DFA accept?

What does this DFA accept?

Answer: All strings

What does this DFA accept?

What does this DFA accept?

Answer: Strings of length 1

What does this DFA accept?

Answer: Strings of length 1

What does this DFA accept?

What does this DFA accept?

Answer: Strings containing only 1's

What does this DFA accept?

What does this DFA accept?

Answer: Strings containing no two consecutive 1's

Language

- Given alphabet Σ, a language L is a set of strings over the alphabet, i.e. $L \subseteq \Sigma^{*}$

Language

- Given alphabet Σ, a language L is a set of strings over the alphabet, i.e. $L \subseteq \Sigma^{*}$

Set of all possible
strings over Σ

- We say a language L is accepted/recognized by a DFA M, if M accepts input string $x \in \Sigma^{*}$ if and only if $x \in L$

Language

- Given alphabet Σ, a language L is a set of strings over the alphabet, i.e. $L \subseteq \Sigma^{*}$

Set of all possible
strings over Σ

Language

- Given alphabet Σ, a language L is a set of strings over the alphabet, i.e. $L \subseteq \Sigma^{*}$

Set of all possible
strings over Σ

- We say a language L is accepted/recognized by a DFA M, if M accepts input string $x \in \Sigma^{*}$ if and only if $x \in L$

What language does this DFA accept?

What language does this DFA accept?

Answer: Only the string 1

What language does this DFA accept?

What language does this DFA accept?

Answer: Only the string 11

DFA's find it difficult to count

- A DFA that recognizes the language $\left\{1^{c}\right\}$ (the single string of c 1's) must have at least c states

DFA's find it difficult to count

- A DFA that recognizes the language $\left\{1^{c}\right\}$ (the single string of c 1's) must have at least c states
- The parent alphabet is irrelevant (but must of course contain 1)
(Proof discussion to be
completed next class)

