Mathematical Induction

CS 2800: Discrete Structures, Spring 2015

Sid Chaudhuri

Prime factorizability

- A prime number is a positive integer with exactly two divisors: 1 and itself
- $2,3,5,7,11,13,17, \ldots$

Prime factorizability

- A prime number is a positive integer with exactly two divisors: 1 and itself
- $2,3,5,7,11,13,17, \ldots$
- Claim: Every natural number ≥ 2 can be expressed as a finite product of prime numbers
- E.g. $3=3$

$$
15=3 \times 5
$$

$$
16=2 \times 2 \times 2 \times 2
$$

17

Is it prime?

$$
\underset{\text { Yes! }}{\downarrow}
$$

(And there was much rejoicing)

(And there was
much rejoicing)

Is it prime?

$$
\begin{gathered}
\downarrow \\
\text { Yes! }
\end{gathered}
$$

(And there was much rejoicing)

20

Is it prime?

(And there was much rejoicing)

is it prime? is it prime?

Prime factorizability

- Claim: Every natural number ≥ 2 can be expressed as a finite product of prime numbers

Prime factorizability

- Claim: Every natural number ≥ 2 can be expressed as a finite product of prime numbers
- Proof:
- Let's start with 2 . This is trivially the product of one prime number. So the claim is true for 2 .

Prime factorizability

- Claim: Every natural number ≥ 2 can be expressed as a finite product of prime numbers
- Proof:
- Let's start with 2 . This is trivially the product of one prime number. So the claim is true for 2.
- Now assume the claim is true for all natural numbers from 2 to n

Prime factorizability

- Claim: Every natural number ≥ 2 can be expressed as a finite product of prime numbers
- Proof:
- Let's start with 2. This is trivially the product of one prime number. So the claim is true for 2.
- Now assume the claim is true for all natural numbers from 2 to n

$$
\begin{aligned}
& \text { Which } n \text { ? we'll assume } \\
& n \text { is arbitrary, but } \geq 2
\end{aligned}
$$

Prime factorizability

- Proof (contd):
- (We've assumed the claim is true for all natural numbers from 2 to n)

Prime factorizability

- Proof (contd):
- (We've assumed the claim is true for all natural numbers from 2 to n)
- Consider $n+1$

Prime factorizability

- Proof (contd):
- (We've assumed the claim is true for all natural numbers from 2 to n)
- Consider $n+1$
- If it is prime, then the claim is trivially true for $n+1$

Prime factorizability

- Proof (contd):
- (We've assumed the claim is true for all natural numbers from 2 to n)
- Consider $n+1$
- If it is prime, then the claim is trivially true for $n+1$
- If it is composite, then it is (by definition), the product of two natural numbers a and b, both >1 but $<n+1$

Prime factorizability

- Proof (contd):
- (We've assumed the claim is true for all natural numbers from 2 to n)
- Consider $n+1$
- If it is prime, then the claim is trivially true for $n+1$
- If it is composite, then it is (by definition), the product of two natural numbers a and b, both >1 but $<n+1$
- Since the claim is assumed to be true for all natural numbers from 2 to n, it is also true for a and b

Prime factorizability

- Proof (contd):
- (We've assumed the claim is true for all natural numbers from 2 to n)
- Consider $n+1$
- If it is prime, then the claim is trivially true for $n+1$
- If it is composite, then it is (by definition), the product of two natural numbers a and b, both >1 but $<n+1$
- Since the claim is assumed to be true for all natural numbers from 2 to n, it is also true for a and b
- So $a=p_{1} p_{2} p_{3} \ldots p_{m}$ and $b=q_{1} q_{2} q_{3} \ldots q_{k}$, where all p_{i}, q_{j} are prime

Prime factorizability

- Proof (contd):
- (We've assumed the claim is true for all natural numbers from 2 to n)
- Consider $n+1$
- If it is prime, then the claim is trivially true for $n+1$
- If it is composite, then it is (by definition), the product of two natural numbers a and b, both >1 but $<n+1$
- Since the claim is assumed to be true for all natural numbers from 2 to n, it is also true for a and b
- So $a=p_{1} p_{2} p_{3} \ldots p_{m}$ and $b=q_{1} q_{2} q_{3} \ldots q_{k}$, where all p_{i}, q_{j} are prime
- So $n+1=p_{1} p_{2} \ldots p_{m} q_{1} q_{2} \ldots q_{k}$, i.e. the claim is true for $n+1$

Prime factorizability

- What have we shown?

Prime factorizability

- What have we shown?
- 2 is a finite product of prime numbers

Prime factorizability

- What have we shown?
- 2 is a finite product of prime numbers
- For any $n \geq 2$, if all natural numbers from 2 to n are finite products of prime numbers, then so is $n+1$

Prime factorizability

- What have we shown?
- 2 is a finite product of prime numbers
- For any $n \geq 2$, if all natural numbers from 2 to n are finite products of prime numbers, then so is $n+1$
- Can we conclude that all natural numbers ≥ 2 are finite products of prime numbers?

Prime factorizability

- What have we shown?
- 2 is a finite product of prime numbers
- For any $n \geq 2$, if all natural numbers from 2 to n are finite products of prime numbers, then so is $n+1$
- Can we conclude that all natural numbers ≥ 2 are finite products of prime numbers?
- Yes!

Prime factorizability

- What have we shown?
- 2 is a finite product of prime numbers
- For any $n \geq 2$, if all natural numbers from 2 to n are finite products of prime numbers, then so is $n+1$
- Can we conclude that all natural numbers ≥ 2 are finite products of prime numbers?
- Yes!
- If it's true for 2 , it must be true for 3 . If it's true for 3 , it must be true for 4 . If it's true for 4 ...

Prime factorizability

- What have we shown?
- 2 is a finite product of prime numbers
- For any $n \geq 2$, if all natural numbers from 2 to n are finite products of prime numbers, then so is $n+1$
- Can we conclude that all natural numbers ≥ 2 are finite products of prime numbers?
- Yes!
- If it's true for 2 , it must be true for 3 . If it's true for 3 , it must be true for 4. If it's true for 4...
- We've applied the Principle of Mathematical Induction

Principle of Mathematical Induction

- We need to prove statement $S(n)$ about natural numbers n

Principle of Mathematical Induction

- We need to prove statement $S(n)$ about natural numbers n
- If we can show that
- Base case: $S(0)$ is true, and

Principle of Mathematical Induction

- We need to prove statement $S(n)$ about natural numbers n
- If we can show that
- Base case: $S(0)$ is true, and
- Inductive step: Assumption that $S(k)$ is true for all natural numbers $k \leq n$ implies that $S(n+1)$ is true

Principle of Mathematical Induction

- We need to prove statement $S(n)$ about natural numbers n
- If we can show that
- Base case: $S(0)$ is true, and
- Inductive step: Assumption that $S(k)$ is true for all natural numbers $k \leq n$ implies that $S(n+1)$ is true

Principle of Mathematical Induction

- We need to prove statement $S(n)$ about natural numbers n
- If we can show that
- Base case: $S(0)$ is true, and
- Inductive step: Assumption that $S(k)$ is true for all natural numbers $k \leq n$ implies that $S(n+1)$ is true
- ... then $S(n)$ is true for all natural numbers n

Principle of Mathematical Induction

- Variants

Principle of Mathematical Induction

- Variants
- Can start from an integer k which is not 0 . The statement is then proved for all integers $\geq k$
- Starting from a negative number doesn't change the applicability of induction, but be careful when stating the inductive hypothesis and when proving the inductive step!

Principle of Mathematical Induction

- Variants
- Can start from an integer k which is not 0 . The statement is then proved for all integers $\geq k$
- Starting from a negative number doesn't change the applicability of induction, but be careful when stating the inductive hypothesis and when proving the inductive step!
- Can start with multiple base cases, i.e. directly prove $S(0), S(1), \ldots, S(m)$ and use induction for all integers greater than m

Principle of Mathematical Induction

- Variants
- Can start from an integer k which is not 0 . The statement is then proved for all integers $\geq k$
- Starting from a negative number doesn't change the applicability of induction, but be careful when stating the inductive hypothesis and when proving the inductive step!
- Can start with multiple base cases, i.e. directly prove $S(0), S(1), \ldots, S(m)$ and use induction for all integers greater than m
- Can apply to any countable set (prove!)

Example: Sum of the natural numbers

- $S(n)=" 0+1+2+3+\ldots+n=n(n+1) / 2 "$

Example: Sum of the natural numbers

- $S(n)=" 0+1+2+3+\ldots+n=n(n+1) / 2 "$
- Base case: $0=0(0+1) / 2$, hence $S(0)$ is true

Example: Sum of the natural numbers

- $S(n)=" 0+1+2+3+\ldots+n=n(n+1) / 2 "$
- Base case: $0=0(0+1) / 2$, hence $S(0)$ is true
- Inductive step:
- Assume $0+1+2+\ldots+k=k(k+1) / 2$ for all natural numbers $k \leq n$

Example: Sum of the natural numbers

- $S(n)=" 0+1+2+3+\ldots+n=n(n+1) / 2 "$
- Base case: $0=0(0+1) / 2$, hence $S(0)$ is true
- Inductive step:
- Assume $0+1+2+\ldots+k=k(k+1) / 2$ for all natural numbers $k \leq n$
- Then $0+1+2+\ldots+n+(n+1)=n(n+1) / 2+(n+1)$

Example: Sum of the natural numbers

- $S(n)=" 0+1+2+3+\ldots+n=n(n+1) / 2 "$
- Base case: $0=0(0+1) / 2$, hence $S(0)$ is true
- Inductive step:
- Assume $0+1+2+\ldots+k=k(k+1) / 2$ for all natural numbers $k \leq n$
- Then $0+1+2+\ldots+n+(n+1)=n(n+1) / 2+(n+1)$ $=(n+1)(n+2) / 2$

Example: Sum of the natural numbers

- $S(n)=" 0+1+2+3+\ldots+n=n(n+1) / 2 "$
- Base case: $0=0(0+1) / 2$, hence $S(0)$ is true
- Inductive step:
- Assume $0+1+2+\ldots+k=k(k+1) / 2$ for all natural numbers $k \leq n$
- Then $0+1+2+\ldots+n+(n+1)=n(n+1) / 2+(n+1)$ $=(n+1)(n+2) / 2$
- Hence $S(n+1)$ is true

Example: Sum of the natural numbers

- $S(n)=" 0+1+2+3+\ldots+n=n(n+1) / 2 "$
- Base case: $0=0(0+1) / 2$, hence $S(0)$ is true
- Inductive step:
- Assume $0+1+2+\ldots+k=k(k+1) / 2$ for all natural numbers $k \leq n$
- Then $0+1+2+\ldots+n+(n+1)=n(n+1) / 2+(n+1)$ $=(n+1)(n+2) / 2$
- Hence $S(n+1)$ is true
- Hence by induction, $S(n)$ is true for all $n \in \mathbf{N}$

Example: Tiling with triominoes

$S(n)=$ "A $2^{n} \times 2^{n}$ chessboard with one corner missing can be tiled with triominoes"

Example: Tiling with triominoes

Base case: A 1×1 chessboard with one corner missing is empty, so $S(0)$ is true

Example: Tiling with triominoes

Another base case (although this isn't necessary): A 2×2 chessboard with one corner missing is just a single triomino, so $S(1)$ is true

Example: Tiling with triominoes

- Inductive step:
- Assume a $2^{k} \times 2^{k}$ chessboard with a corner missing can be tiled with triominoes, for all natural numbers $k \leq n$
- Consider a $2^{n+1} \times 2^{n+1}$ board (with a corner missing)

Example: Tiling with triominoes

Example: Tiling with triominoes

Example: Tiling with triominoes

- Inductive step:
- Assume a $2^{k} \times 2^{k}$ chessboard with a corner missing can be tiled with triominoes, for all natural numbers $k \leq n$
- Consider a $2^{n+1} \times 2^{n+1}$ board (with a corner missing)
- It is just four $2^{n} \times 2^{n}$ boards, plus one triomino

Example: Tiling with triominoes

- Inductive step:
- Assume a $2^{k} \times 2^{k}$ chessboard with a corner missing can be tiled with triominoes, for all natural numbers $k \leq n$
- Consider a $2^{n+1} \times 2^{n+1}$ board (with a corner missing)
- It is just four $2^{n} \times 2^{n}$ boards, plus one triomino
- From the inductive hypothesis, we know each of these boards can be tiled with triominoes

Example: Tiling with triominoes

- Inductive step:
- Assume a $2^{k} \times 2^{k}$ chessboard with a corner missing can be tiled with triominoes, for all natural numbers $k \leq n$
- Consider a $2^{n+1} \times 2^{n+1}$ board (with a corner missing)
- It is just four $2^{n} \times 2^{n}$ boards, plus one triomino
- From the inductive hypothesis, we know each of these boards can be tiled with triominoes
- Hence $S(n+1)$ is true

Example: Tiling with triominoes

- Inductive step:
- Assume a $2^{k} \times 2^{k}$ chessboard with a corner missing can be tiled with triominoes, for all natural numbers $k \leq n$
- Consider a $2^{n+1} \times 2^{n+1}$ board (with a corner missing)
- It is just four $2^{n} \times 2^{n}$ boards, plus one triomino
- From the inductive hypothesis, we know each of these boards can be tiled with triominoes
- Hence $S(n+1)$ is true
- Hence by induction, $S(n)$ is true for all $n \in \mathbf{N}$

Example: Fibonacci program

$S(n)=$ "The following program returns the $n^{\text {th }}$
Fibonacci number, given input n "

```
int fibonacci(int n)
{
    if (n <= 1)
        return 1;
    else
        return fibonacci(n - 1) + fibonacci(n - 2);
}
```


Example: Fibonacci program

$S(n)=$ "The following program returns the $n^{\text {th }}$ Fibonacci number, given input n "

int fibonacci(int n)
\{
if ($n<=1$)
return 1;
else
return fibonacci(n - 1) + fibonacci(n - 2);
\}

Example: Fibonacci program

$S(n)=$ "The following program returns the $n^{\text {th }}$ Fibonacci number, given input n "


```
int fibonacci(int n)
{
    if (n <= 1)
        return 1;
    else
        return fibonacci(n - 1) + fibonacci(n - 2);
}
```


Example: Fibonacci program

- Base cases: fibonacci(0) and fibonacci(1) return the first two Fibonacci numbers (1 and 1, easily verified), so $S(0)$ and $S(1)$ are true

```
int fibonacci(int n)
{
    if (n <= 1)
        return 1;
    else
        return fibonacci(n - 1) + fibonacci(n - 2);
}
```


Example: Fibonacci program

- Inductive step:
- Assume, for $n \geq 2$, that fibonacci(k) returns the $k^{\text {th }}$ Fibonacci number for all $k \leq n$

Example: Fibonacci program

- Inductive step:
- Assume, for $n \geq 2$, that fibonacci(k) returns the $k^{\text {th }}$ Fibonacci number for all $k \leq n$
- Consider fibonacci($\mathrm{n}+1$)

Example: Fibonacci program

- Inductive step:
- Assume, for $n \geq 2$, that fibonacci(k) returns the $k^{\text {th }}$ Fibonacci number for all $k \leq n$
- Consider fibonacci($\mathrm{n}+1$)
- From the program, it returns fibonacci(n) + fibonacci(n - 1)

Example: Fibonacci program

- Inductive step:
- Assume, for $n \geq 2$, that fibonacci(k) returns the $k^{\text {th }}$ Fibonacci number for all $k \leq n$
- Consider fibonacci($\mathrm{n}+1$)
- From the program, it returns fibonacci(n) + fibonacci(n - 1)
- From the inductive hypothesis, these are the $n^{\text {th }}$ and $(n-1)^{\text {th }}$ Fibonacci numbers, respectively

Example: Fibonacci program

- Inductive step:
- Assume, for $n \geq 2$, that fibonacci(k) returns the $k^{\text {th }}$ Fibonacci number for all $k \leq n$
- Consider fibonacci(n + 1)
- From the program, it returns fibonacci(n) + fibonacci(n - 1)
- From the inductive hypothesis, these are the $n^{\text {th }}$ and $(n-1)^{\text {th }}$ Fibonacci numbers, respectively
- Hence by definition of Fibonacci numbers, fibonacci $(\mathrm{n}+1)$ returns the $(n+1)^{\text {th }}$ Fibonacci number, i.e. $S(n+1)$ is true

Example: Fibonacci program

- Inductive step:
- Assume, for $n \geq 2$, that fibonacci(k) returns the $k^{\text {th }}$ Fibonacci number for all $k \leq n$
- Consider fibonacci($\mathrm{n}+1$)
- From the program, it returns fibonacci(n) + fibonacci(n - 1)
- From the inductive hypothesis, these are the $n^{\text {th }}$ and $(n-1)^{\text {th }}$ Fibonacci numbers, respectively
- Hence by definition of Fibonacci numbers, fibonacci $(\mathrm{n}+1)$ returns the $(n+1)^{\text {th }}$ Fibonacci number, i.e. $S(n+1)$ is true
- Hence by induction, $S(n)$ is true for all $n \in \mathbf{N}$

Example: Fibonacci program

- Inductive step:
- Assume, for $n \geq 2$, that fibonacci(k) returns the $k^{\text {th }}$ Fibonacci number for all $k \leq n$
- Consider fibonacci($\mathrm{n}+1$)
- From the program, it returns fibonacci(n) + fibonacci(n - 1)
- From the inductive hypothesis, these are the $n^{\text {th }}$ and $(n-1)^{\text {th }}$ Fibonacci numbers, respectively
- Hence by definition of Fibonacci numbers, fibonacci $(\mathrm{n}+1)$ returns the $(n+1)^{\text {th }}$ Fibonacci number, i.e. $S(n+1)$ is true
- Hence by induction, $S(n)$ is true for all $n \in \mathbf{N}$

All horses are the same color

All horses are the same color

- $S(n)=$ "Any group of n horses is the same color"

All horses are the same color

- $S(n)=$ "Any group of n horses is the same color"

Doesn't say anything about whether different groups of n horses have different colors or not

All horses are the same color

- $S(n)=$ "Any group of n horses is the same color"
- Base case: A single horse is obviously the same color as itself, so $S(1)$ is true (and $S(0)$ is trivially true)

All horses are the same color

- $S(n)=$ "Any group of n horses is the same color"
- Base case: A single horse is obviously the same color as itself, so $S(1)$ is true (and $S(0)$ is trivially true)
- Inductive step:
- Assume any group of $k \leq n$ horses is the same color

All horses are the same color

- $S(n)=$ "Any group of n horses is the same color"
- Base case: A single horse is obviously the same color as itself, so $S(1)$ is true (and $S(0)$ is trivially true)
- Inductive step:
- Assume any group of $k \leq n$ horses is the same color
- A group of $n+1$ horses can be expressed as the union of two groups of n horses each

All horses are the same color

- $S(n)=$ "Any group of n horses is the same color"
- Base case: A single horse is obviously the same color as itself, so $S(1)$ is true (and $S(0)$ is trivially true)
- Inductive step:
- Assume any group of $k \leq n$ horses is the same color
- A group of $n+1$ horses can be expressed as the union of two groups of n horses each
- These two groups are individually the same color, by hypothesis

All horses are the same color

- $S(n)=$ "Any group of n horses is the same color"
- Base case: A single horse is obviously the same color as itself, so $S(1)$ is true (and $S(0)$ is trivially true)
- Inductive step:
- Assume any group of $k \leq n$ horses is the same color
- A group of $n+1$ horses can be expressed as the union of two groups of n horses each
- These two groups are individually the same color, by hypothesis
- ... and they overlap

All horses are the same color

- $S(n)=$ "Any group of n horses is the same color"
- Base case: A single horse is obviously the same color as itself, so $S(1)$ is true (and $S(0)$ is trivially true)
- Inductive step:
- Assume any group of $k \leq n$ horses is the same color
- A group of $n+1$ horses can be expressed as the union of two groups of n horses each
- These two groups are individually the same color, by hypothesis
- ... and they overlap
- So the group of $n+1$ horses is the same color

All horses are the same color

- $S(n)=$ "Any group of n horses is the same color"
- Base case: A single horse is obviously the same color as itself, so $S(1)$ is true (and $S(0)$ is trivially true)
- Inductive step:
- Assume any group of $k \leq n$ horses is the same color
- A group of $n+1$ horses can be expressed as the union of two groups of n horses each
- These two groups are individually the same color, by hypothesis
- ... and they overlap
- So the group of $n+1$ horses is the same color
- Hence by induction, all horses are the same color

All horses are the same color

- $S(n)=$ "Any group of n horses is the same color"
- Base case: A single horse is obviously the same color as itself, so $S(1)$ is true (and $S(0)$ is trivially true)
- Inductive step:
- Assume any group of $k \leq n$ horses is the same color
- A group of $n+1$ horses can be expressed as the union of two groups of n horses each
- These two groups are individually the same color, by hypothesis
- and they overlap $<$ Not for $n=1$!
- So the group of $n+1$ horses is the same color
- Hence by induction, all horses are the same color

