Mathematical Induction

CS 2800: Discrete Structures, Spring 2015

Sid Chaudhuri

• A prime number is a positive integer with exactly two divisors: 1 and itself

- 2, 3, 5, 7, 11, 13, 17, ...

• A prime number is a positive integer with exactly two divisors: 1 and itself

- 2, 3, 5, 7, 11, 13, 17, ...

• Claim: Every natural number ≥ 2 can be expressed as a finite product of prime numbers

- E.g.
$$3 = 3$$

 $15 = 3 \times 5$
 $16 = 2 \times 2 \times 2 \times 2$

17 J Is it prime?

(And there was much rejoicing)

20

much rejoicing)

(And there was much rejoicing)

(And there was much rejoicing)

(And there was much rejoicing)

• Claim: Every natural number ≥ 2 can be expressed as a finite product of prime numbers

- Claim: Every natural number ≥ 2 can be expressed as a finite product of prime numbers
- Proof:
 - Let's start with 2. This is trivially the product of one prime number. So the claim is true for 2.

- Claim: Every natural number ≥ 2 can be expressed as a finite product of prime numbers
- Proof:
 - Let's start with 2. This is trivially the product of one prime number. So the claim is true for 2.
 - Now assume the claim is true for all natural numbers
 from 2 to n

- Claim: Every natural number ≥ 2 can be expressed as a finite product of prime numbers
- Proof:
 - Let's start with 2. This is trivially the product of one prime number. So the claim is true for 2.
 - Now assume the claim is true for all natural numbers
 from 2 to n

which n? we'll assume

n is arbitrary, but \geq 2

- Proof (contd):
 - (We've assumed the claim is true for all natural numbers from 2 to n)

- Proof (contd):
 - (We've assumed the claim is true for all natural numbers from 2 to n)
 - Consider n + 1

- Proof (contd):
 - (We've assumed the claim is true for all natural numbers from 2 to n)
 - Consider n + 1
 - If it is prime, then the claim is trivially true for n + 1

- Proof (contd):
 - (We've assumed the claim is true for all natural numbers from 2 to n)
 - Consider n + 1
 - If it is prime, then the claim is trivially true for n + 1
 - If it is composite, then it is (by definition), the product of two natural numbers *a* and *b*, both > 1 but < *n* + 1

- Proof (contd):
 - (We've assumed the claim is true for all natural numbers from 2 to n)
 - Consider n + 1
 - If it is prime, then the claim is trivially true for n + 1
 - If it is composite, then it is (by definition), the product of two natural numbers *a* and *b*, both > 1 but < *n* + 1
 - Since the claim is assumed to be true for all natural numbers from 2 to *n*, it is also true for *a* and *b*

- Proof (contd):
 - (We've assumed the claim is true for all natural numbers from 2 to n)
 - Consider n + 1
 - If it is prime, then the claim is trivially true for n + 1
 - If it is composite, then it is (by definition), the product of two natural numbers *a* and *b*, both > 1 but < *n* + 1
 - Since the claim is assumed to be true for all natural numbers from 2 to *n*, it is also true for *a* and *b*
 - So $a = p_1 p_2 p_3 \dots p_m$ and $b = q_1 q_2 q_3 \dots q_k$, where all p_i, q_j are prime

- Proof (contd):
 - (We've assumed the claim is true for all natural numbers from 2 to n)
 - Consider n + 1
 - If it is prime, then the claim is trivially true for n + 1
 - If it is composite, then it is (by definition), the product of two natural numbers *a* and *b*, both > 1 but < *n* + 1
 - Since the claim is assumed to be true for all natural numbers from 2 to *n*, it is also true for *a* and *b*
 - So $a = p_1 p_2 p_3 \dots p_m$ and $b = q_1 q_2 q_3 \dots q_k$, where all p_i, q_j are prime
 - So $n + 1 = p_1 p_2 \dots p_m q_1 q_2 \dots q_k$, i.e. the claim is true for n + 1

• What have we shown?

- What have we shown?
 - 2 is a finite product of prime numbers

- What have we shown?
 - 2 is a finite product of prime numbers
 - For any $n \ge 2$, if all natural numbers from 2 to n are finite products of prime numbers, then so is n + 1

- What have we shown?
 - 2 is a finite product of prime numbers
 - For any $n \ge 2$, if all natural numbers from 2 to n are finite products of prime numbers, then so is n + 1
- Can we conclude that all natural numbers ≥ 2 are finite products of prime numbers?

- What have we shown?
 - 2 is a finite product of prime numbers
 - For any $n \ge 2$, if all natural numbers from 2 to n are finite products of prime numbers, then so is n + 1
- Can we conclude that all natural numbers ≥ 2 are finite products of prime numbers?
 - Yes!

- What have we shown?
 - 2 is a finite product of prime numbers
 - For any $n \ge 2$, if all natural numbers from 2 to n are finite products of prime numbers, then so is n + 1
- Can we conclude that all natural numbers ≥ 2 are finite products of prime numbers?
 - Yes!
 - If it's true for 2, it must be true for 3. If it's true for 3, it must be true for 4. If it's true for 4...

- What have we shown?
 - 2 is a finite product of prime numbers
 - For any $n \ge 2$, if all natural numbers from 2 to n are finite products of prime numbers, then so is n + 1
- Can we conclude that all natural numbers ≥ 2 are finite products of prime numbers?
 - Yes!
 - If it's true for 2, it must be true for 3. If it's true for 3, it must be true for 4. If it's true for 4...
 - We've applied the Principle of Mathematical Induction
• We need to prove statement *S*(*n*) about natural numbers *n*

- We need to prove statement *S*(*n*) about natural numbers *n*
- If we can show that
 - Base case: S(0) is true, and

- We need to prove statement *S*(*n*) about natural numbers *n*
- If we can show that
 - Base case: S(0) is true, and
 - Inductive step: Assumption that S(k) is true for all natural numbers $k \le n$ implies that S(n + 1) is true

- We need to prove statement *S*(*n*) about natural numbers *n*
- If we can show that
 Base case: S(0) is true, and
 Inductive step: Assumption that S(k) is true for all natural numbers k ≤ n implies that S(n + 1) is true

- We need to prove statement *S*(*n*) about natural numbers *n*
- If we can show that
 Base case: S(0) is true, and
 Inductive step: Assumption that S(k) is true for all natural numbers k ≤ n implies that S(n + 1) is true
 - ... then S(n) is true for all natural numbers n

• Variants

- Variants
 - Can start from an integer k which is not 0. The statement is then proved for all integers $\geq k$
 - Starting from a negative number doesn't change the applicability of induction, but be careful when stating the inductive hypothesis and when proving the inductive step!

- Variants
 - Can start from an integer k which is not 0. The statement is then proved for all integers $\geq k$
 - Starting from a negative number doesn't change the applicability of induction, but be careful when stating the inductive hypothesis and when proving the inductive step!
 - Can start with multiple base cases, i.e. directly prove
 S(0), S(1), ..., S(m) and use induction for all integers
 greater than m

- Variants
 - Can start from an integer k which is not 0. The statement is then proved for all integers $\geq k$
 - Starting from a negative number doesn't change the applicability of induction, but be careful when stating the inductive hypothesis and when proving the inductive step!
 - Can start with multiple base cases, i.e. directly prove
 S(0), S(1), ..., S(m) and use induction for all integers
 greater than m
 - Can apply to any countable set (prove!)

• S(n) = "0 + 1 + 2 + 3 + ... + n = n(n + 1) / 2"

- S(n) = "0 + 1 + 2 + 3 + ... + n = n(n + 1) / 2"
- Base case: 0 = 0(0 + 1)/2, hence S(0) is true

- S(n) = "0 + 1 + 2 + 3 + ... + n = n(n + 1) / 2"
- Base case: 0 = 0(0 + 1)/2, hence S(0) is true
- Inductive step:
 - Assume $0 + 1 + 2 + \ldots + k = k (k + 1) / 2$ for all natural numbers $k \le n$

- S(n) = "0 + 1 + 2 + 3 + ... + n = n(n + 1) / 2"
- Base case: 0 = 0(0 + 1)/2, hence S(0) is true
- Inductive step:
 - Assume $0 + 1 + 2 + \ldots + k = k (k + 1) / 2$ for all natural numbers $k \le n$
 - Then $0 + 1 + 2 + \ldots + n + (n + 1) = n(n + 1) / 2 + (n + 1)$

- S(n) = "0 + 1 + 2 + 3 + ... + n = n(n + 1) / 2"
- Base case: 0 = 0(0 + 1)/2, hence S(0) is true
- Inductive step:
 - Assume $0 + 1 + 2 + \ldots + k = k (k + 1) / 2$ for all natural numbers $k \le n$
 - Then 0 + 1 + 2 + ... + n + (n + 1) = n(n + 1) / 2 + (n + 1)= (n + 1)(n + 2) / 2

- S(n) = "0 + 1 + 2 + 3 + ... + n = n(n + 1) / 2"
- Base case: 0 = 0(0 + 1)/2, hence S(0) is true
- Inductive step:
 - Assume $0 + 1 + 2 + \ldots + k = k (k + 1) / 2$ for all natural numbers $k \le n$
 - Then 0 + 1 + 2 + ... + n + (n + 1) = n(n + 1) / 2 + (n + 1)= (n + 1)(n + 2) / 2
 - Hence S(n + 1) is true

- S(n) = "0 + 1 + 2 + 3 + ... + n = n(n + 1) / 2"
- Base case: 0 = 0(0 + 1)/2, hence S(0) is true
- Inductive step:
 - Assume $0 + 1 + 2 + \ldots + k = k (k + 1) / 2$ for all natural numbers $k \le n$
 - Then 0 + 1 + 2 + ... + n + (n + 1) = n(n + 1) / 2 + (n + 1)= (n + 1)(n + 2) / 2
 - Hence S(n + 1) is true
- Hence by induction, S(n) is true for all $n \in \mathbb{N}$

S(n) = "A $2^n \times 2^n$ chessboard with one corner missing can be tiled with triominoes"

Base case: A 1×1 chessboard with one corner missing is empty, so S(0) is true

Another base case (although this isn't necessary): A 2×2 chessboard with one corner missing is just a single triomino, so S(1) is true

- Inductive step:
 - Assume a $2^k \times 2^k$ chessboard with a corner missing can be tiled with triominoes, for all natural numbers $k \le n$
 - Consider a $2^{n+1} \times 2^{n+1}$ board (with a corner missing)

- Inductive step:
 - Assume a $2^k \times 2^k$ chessboard with a corner missing can be tiled with triominoes, for all natural numbers $k \le n$
 - Consider a $2^{n+1} \times 2^{n+1}$ board (with a corner missing)
 - It is just four $2^n \times 2^n$ boards, plus one triomino

- Inductive step:
 - Assume a $2^k \times 2^k$ chessboard with a corner missing can be tiled with triominoes, for all natural numbers $k \le n$
 - Consider a $2^{n+1} \times 2^{n+1}$ board (with a corner missing)
 - It is just four $2^n \times 2^n$ boards, plus one triomino
 - From the inductive hypothesis, we know each of these boards can be tiled with triominoes

- Inductive step:
 - Assume a $2^k \times 2^k$ chessboard with a corner missing can be tiled with triominoes, for all natural numbers $k \le n$
 - Consider a $2^{n+1} \times 2^{n+1}$ board (with a corner missing)
 - It is just four $2^n \times 2^n$ boards, plus one triomino
 - From the inductive hypothesis, we know each of these boards can be tiled with triominoes
 - Hence S(n + 1) is true

- Inductive step:
 - Assume a $2^k \times 2^k$ chessboard with a corner missing can be tiled with triominoes, for all natural numbers $k \le n$
 - Consider a $2^{n+1} \times 2^{n+1}$ board (with a corner missing)
 - It is just four $2^n \times 2^n$ boards, plus one triomino
 - From the inductive hypothesis, we know each of these boards can be tiled with triominoes
 - Hence S(n + 1) is true
- Hence by induction, S(n) is true for all $n \in \mathbb{N}$

S(n) = "The following program returns the n^{th} Fibonacci number, given input $n^{"}$

```
int fibonacci(int n)
{
    if (n <= 1)
        return 1;
    else
        return fibonacci(n - 1) + fibonacci(n - 2);
}</pre>
```

```
S(n) = "The following program returns the n^{\text{th}}
Fibonacci number, given input n^{"}
```

```
int fibonacci(int n)
{
    if (n <= 1)
        return 1;
    else
        return fibonacci(n - 1) + fibonacci(n - 2);
}</pre>
```

- 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

• Base cases: fibonacci(0) and fibonacci(1) return the first two Fibonacci numbers (1 and 1, easily verified), so *S*(0) and *S*(1) are true

```
int fibonacci(int n)
{
    if (n <= 1)
        return 1;
    else
        return fibonacci(n - 1) + fibonacci(n - 2);
}</pre>
```

- Inductive step:
 - Assume, for $n \ge 2$, that fibonacci(k) returns the k^{th} Fibonacci number for all $k \le n$

- Inductive step:
 - Assume, for $n \ge 2$, that fibonacci(k) returns the k^{th} Fibonacci number for all $k \le n$
 - Consider fibonacci(n + 1)

- Inductive step:
 - Assume, for $n \ge 2$, that fibonacci(k) returns the k^{th} Fibonacci number for all $k \le n$
 - Consider fibonacci(n + 1)
 - From the program, it returns
 fibonacci(n) + fibonacci(n 1)

- Inductive step:
 - Assume, for $n \ge 2$, that fibonacci(k) returns the k^{th} Fibonacci number for all $k \le n$
 - Consider fibonacci(n + 1)
 - From the program, it returns
 fibonacci(n) + fibonacci(n 1)
 - From the inductive hypothesis, these are the n^{th} and $(n-1)^{\text{th}}$ Fibonacci numbers, respectively

- Inductive step:
 - Assume, for $n \ge 2$, that fibonacci(k) returns the k^{th} Fibonacci number for all $k \le n$
 - Consider fibonacci(n + 1)
 - From the program, it returns
 fibonacci(n) + fibonacci(n 1)
 - From the inductive hypothesis, these are the n^{th} and $(n-1)^{\text{th}}$ Fibonacci numbers, respectively
 - Hence by definition of Fibonacci numbers,
 fibonacci(n + 1) returns the (n + 1)th Fibonacci number,
 i.e. S(n + 1) is true

- Inductive step:
 - Assume, for $n \ge 2$, that fibonacci(k) returns the k^{th} Fibonacci number for all $k \le n$
 - Consider fibonacci(n + 1)
 - From the program, it returns
 fibonacci(n) + fibonacci(n 1)
 - From the inductive hypothesis, these are the n^{th} and $(n-1)^{\text{th}}$ Fibonacci numbers, respectively
 - Hence by definition of Fibonacci numbers, fibonacci(n + 1) returns the (n + 1)th Fibonacci number, i.e. S(n + 1) is true
- Hence by induction, S(n) is true for all $n \in \mathbb{N}$
Example: Fibonacci program

- Inductive step:
 - Assume, for $n \ge 2$, that fibonacci(k) returns the k^{th} Fibonacci number for all $k \le n$
 - Consider fibonacci(n + 1)
 - From the program, it returns
 fibonacci(n) + fibonacci(n 1)
 - From the inductive hypothesis, these are the n^{th} and $(n-1)^{\text{th}}$ Fibonacci numbers, respectively
 - Hence by definition of Fibonacci numbers, fibonacci(n + 1) returns the (n + 1)th Fibonacci number, i.e. S(n + 1) is true
- Hence by induction, S(n) is true for all $n \in \mathbb{N}$

www.clipartof.com, www.fg-a.com

• S(n) = "Any group of *n* horses is the same color"

• S(n) = "Any group of *n* horses is the same color"

Doesn't say anything about whether different groups of n horses have different colors or not

- S(n) = "Any group of *n* horses is the same color"
- Base case: A single horse is obviously the same color as itself, so *S*(1) is true (and *S*(0) is trivially true)

- S(n) = "Any group of *n* horses is the same color"
- Base case: A single horse is obviously the same color as itself, so *S*(1) is true (and *S*(0) is trivially true)
- Inductive step:
 - Assume any group of $k \leq n$ horses is the same color

- S(n) = "Any group of *n* horses is the same color"
- Base case: A single horse is obviously the same color as itself, so *S*(1) is true (and *S*(0) is trivially true)
- Inductive step:
 - Assume any group of $k \leq n$ horses is the same color
 - A group of n + 1 horses can be expressed as the union of two groups of n horses each

- S(n) = "Any group of *n* horses is the same color"
- Base case: A single horse is obviously the same color as itself, so *S*(1) is true (and *S*(0) is trivially true)
- Inductive step:
 - Assume any group of $k \le n$ horses is the same color
 - A group of n + 1 horses can be expressed as the union of two groups of n horses each
 - These two groups are individually the same color, by hypothesis

- S(n) = "Any group of *n* horses is the same color"
- Base case: A single horse is obviously the same color as itself, so *S*(1) is true (and *S*(0) is trivially true)
- Inductive step:
 - Assume any group of $k \leq n$ horses is the same color
 - A group of n + 1 horses can be expressed as the union of two groups of n horses each
 - These two groups are individually the same color, by hypothesis
 - ... and they overlap

- S(n) = "Any group of *n* horses is the same color"
- Base case: A single horse is obviously the same color as itself, so *S*(1) is true (and *S*(0) is trivially true)
- Inductive step:
 - Assume any group of $k \leq n$ horses is the same color
 - A group of n + 1 horses can be expressed as the union of two groups of n horses each
 - These two groups are individually the same color, by hypothesis
 - ... and they overlap
 - So the group of n + 1 horses is the same color

- S(n) = "Any group of *n* horses is the same color"
- Base case: A single horse is obviously the same color as itself, so *S*(1) is true (and *S*(0) is trivially true)
- Inductive step:
 - Assume any group of $k \leq n$ horses is the same color
 - A group of n + 1 horses can be expressed as the union of two groups of n horses each
 - These two groups are individually the same color, by hypothesis
 - ... and they overlap
 - So the group of n + 1 horses is the same color
- Hence by induction, all horses are the same color

- S(n) = "Any group of *n* horses is the same color"
- Base case: A single horse is obviously the same color as itself, so *S*(1) is true (and *S*(0) is trivially true)
- Inductive step:
 - Assume any group of $k \leq n$ horses is the same color
 - A group of n + 1 horses can be expressed as the union of two groups of n horses each
 - These two groups are individually the same color, by hypothesis

- ... and they overlap
$$\leftarrow$$
 Not for $n = 1$

- So the group of n + 1 horses is the same color
- Hence by induction, all horses are the same color