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● A prime number is a positive integer with exactly 
two divisors: 1 and itself
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● Claim: Every natural number ≥ 2 can be expressed 
as a finite product of prime numbers
– E.g.     3 = 3

        15 = 3 × 5
        16 = 2 × 2 × 2 × 2
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Prime factorizability

● Claim: Every natural number ≥ 2 can be expressed 
as a finite product of prime numbers

● Proof:
– Let's start with 2. This is trivially the product of one 

prime number. So the claim is true for 2.
– Now assume the claim is true for all natural numbers 

from 2 to n

Which n? We'll assume 
n is arbitrary, but ≥ 2
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– Consider n + 1
● If it is prime, then the claim is trivially true for n + 1

● If it is composite, then it is (by definition), the product of two 
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● So n + 1 = p
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, i.e. the claim is true for n + 1
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Prime factorizability
● What have we shown?

– 2 is a finite product of prime numbers
– For any n ≥ 2, if all natural numbers from 2 to n are 

finite products of prime numbers, then so is n + 1

● Can we conclude that all natural numbers ≥ 2 are 
finite products of prime numbers?
– Yes!
– If it's true for 2, it must be true for 3. If it's true for 3, 

it must be true for 4. If it's true for 4...
– We've applied the Principle of Mathematical Induction
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Principle of Mathematical Induction

● We need to prove statement S(n) about natural 
numbers n

● If we can show that
– Base case: S(0) is true, and
– Inductive step: Assumption that S(k) is true for all 

natural numbers k ≤ n implies that S(n + 1) is true

● … then S(n) is true for all natural numbers n

Inductive hypothesis
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Principle of Mathematical Induction

● Variants
– Can start from an integer k which is not 0. The 

statement is then proved for all integers ≥ k
● Starting from a negative number doesn't change the 

applicability of induction, but be careful when stating the 
inductive hypothesis and when proving the inductive step!

– Can start with multiple base cases, i.e. directly prove 
S(0), S(1), ..., S(m) and use induction for all integers 
greater than m

– Can apply to any countable set (prove!)
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S(n) = “The following program returns the nth 
Fibonacci number, given input n”

int fibonacci(int n)
{
  if (n <= 1)
    return 1;
  else
    return fibonacci(n – 1) + fibonacci(n – 2);
}

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

Precondition: n ≥ 0

Starting
from 0
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All horses are the same color
● S(n) = “Any group of n horses is the same color”
● Base case: A single horse is obviously the same color as 

itself, so S(1) is true (and S(0) is trivially true)
● Inductive step:

– Assume any group of k ≤ n horses is the same color

– A group of n + 1 horses can be expressed as the union of two 
groups of n horses each

– These two groups are individually the same color, by hypothesis

– … and they overlap

– So the group of n + 1 horses is the same color

● Hence by induction, all horses are the same color

Not for n = 1 !
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