
Equivalence Relations

Siddhartha Chaudhuri

CS 2800, Spring 2015

Definition 1. The cartesian product A × B of sets A and B is the set of all possible ordered pairs with the first
element drawn from A and the second from B. That is, it is the set

A×B = {(a, b) | a ∈ A, b ∈ B}

Definition 2. A relation with domain A and codomain B is a subset of A×B.

For instance, R = {(a, 1), (a, 2), (b, 1)} is a relation from set {a, b, c} to set {1, 2, 3}. Note that R relates a to two
different numbers, and does not cover either the entire domain or the entire codomain. In this, a relation is different
from a function, which is a special type of relation that maps each element of the domain to a single (not necessarily
unique) element of the codomain.

When specifying a particular relation, it is often useful to write it as a rule connecting pairs of elements, rather
than as a set of pairs. Indeed, the latter is often infeasible when large or infinite sets are concerned. For example,
here is a relation P between people:

x P y if and only if x is the parent of y

x P y is read as “x is related (by P , in this case parenthood) to y”. Remember that this relation is still just a set of
pairs, of the form (parent, child), and can be rewritten in that style! This is just a different notation, not a different
definition.

Note also that a relation need not be symmetric. It’s perfectly possible that, as in this example, x P y but not
y P x.

Definition 3. An equivalence relation R on a set A is a relation from A to itself (that is a, subset of A × A) that
satisfies three properties:

1. Reflexivity: For all x ∈ A, x R x.

2. Symmetry: For all x, y ∈ A, if x R y then y R x.

3. Transitivity: For all x, y, z ∈ A, if x R y and y R z, then x R z.

Make sure you correctly interpret these three properties! Reflexivity, for instance, says that every element must
be related to itself. Transitivity says that the relation “short-circuits” chains of related pairs.

It can be useful to draw the relation as a graph. Plot a point for every element of A, and draw an arrow from x
to y if x is related to y. Then reflexivity says that every point has a self loop (an arrow pointing to itself). Symmetry
says that every arrow is bidirectional. And transitivity says that if there is a (directed) path between two points,
then there is a direct arrow between them as well.

We observe right at the outset that any reasonable definition of equality (the “is equal to” sign ‘=’, in the context
of numbers, or sets, or matrices . . . ) that you might see is almost certainly an equivalence relation, else there would
be severe cognitive dissonance. Here are some more examples.

Example 1. Let R be the following relation on the set of all people in the world: x is related to y if and only
if x and y have the same set of parents. This is an equivalence relation, which we can prove by arguing that it is
reflexive, symmetric and transitive. It is clearly reflexive, since one has the same set of parents as oneself. It is also
symmetric, since if I have the same parents as another person, that other person has the same parents as me. And it
is transitive, because if I have the same parents as a second person, and that person has the same parents as a third
person, then all three of us clearly share the same set of parents.

This can also be stated slightly more “mathily”, though plain English works just fine here: let π(x) denote the
set of parents of x. The relation is reflexive since π(x) = π(x), symmetric since π(x) = π(y) =⇒ π(y) = π(x), and
transitive since (π(x) = π(y) ∧ π(y) = π(z)) =⇒ π(x) = π(z). In other words, the result follows from set equality
being reflexive, symmetric and transitive, i.e. an equivalence relation.
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Note that if we had instead defined two people to be related if they shared at least one parent, this would no
longer be an equivalence relation! For example, if Alice, Bob, Carol and David pair up as illustrated below to produce
children Earl, Fiona and Gus, then transitivity is broken: Earl is related to Fiona and Fiona is related to Gus, but
Earl is not related to Gus since they don’t share any parents.

Alice Bob Carol David

Earl Fiona Gus

Note also that if we had instead defined the relation as “x is related to y if they are siblings”, the question of this
being an equivalence would hinge upon whether you consider yourself to be your own sibling.

Example 2. For a given integer m > 1, let ∼m be the following relation on the set of all integers: x ∼m y if and
only if x− y is exactly divisible by m. That is, x and y leave the same remainder upon division by m (the remainder
needs to be suitably defined when dividing negative numbers). This relation is important enough in both theoretical
and practical (e.g. cryptography) settings to have a special name: “congruence modulo m”.

This is an equivalence relation. It is reflexive: x − x = 0, which is divisible by m. It is symmetric: if x − y is
divisible by m, so is y − x = −(x − y). It is transitive: if x − y = am and y − z = bm, for integers a and b, then
x− z = (a+ b)m, which is divisible by m.

A specific example: if m = 10, then this relation says that . . . − 15,−5, 5, 15, 25, 35 . . . are all equivalent, as are
. . .− 19,−9, 1, 11, 21, 31 . . . , etc. The first set of numbers all leave 5 as a remainder when divided by 10; the second
set leaves 1 as a remainder. We can devise a way to to do arithmetic only in the space of remainders {0, 1, . . . ,m−1}:
this is called modular arithmetic. For m = 2, this is just 1-bit binary arithmetic, which is the foundation of modern
digital computers. For certain very large values of m, this arithmetic is crucial to constructing secure cryptosystems,
as we will see later in this course.

An equivalence relation induces a very neat structure on a set. This is expressed via the notion of an equivalence
class.

Definition 4. The equivalence class, denoted [x], of an element x of set A with respect to an equivalence relation ∼
defined on A, is the set of all elements that are equivalent to x. That is,

[x] = {y ∈ A | x ∼ y}

The set of all equivalence classes of ∼ on A, denoted A/∼, is called the quotient (or quotient set) of the relation. It
is by definition a subset of the power set 2A.

Theorem 1. The quotient of an equivalence relation is a partition of the underlying set. That is, the elements of
A/∼ are disjoint, and their union is A.

Proof. We will first show that the elements of A/∼ are disjoint. To do this, it is sufficient to prove that the equivalence
classes [x] and [y] of two arbitrary elements x, y ∈ A are either disjoint or identical: they cannot partially overlap.
Assume [x] and [y] are not, in fact, disjoint. Then they have a non-zero intersection [x] ∩ [y], from which we can
select some arbitrary representative z. Our strategy will be to “chain” the relation through z. Consider any element
a ∈ [y]. By definition, y ∼ a. Also, y ∼ z (since z ∈ [y]), from which we conclude that z ∼ y (by symmetry). By
transitivity, z ∼ a. But z is also in [x], so x ∼ z! Again applying transitivity, we obtain x ∼ a, which implies that
a ∈ [x]. Since a was an arbitrary element of [y], we conclude that [y] ⊆ [x]. By a symmetric argument, we can also
show that [x] ⊆ [y]. Hence, [x] = [y].

To complete the proof, we must show that the union of the equivalence classes is A. But this is easy: every
element of A is related to itself by reflexivity, so it must be in its own equivalence class: x ∈ [x]! Hence every element
of A is covered by some equivalence class.

To wrap this up, here’s a little exercise that uses equivalence relations to study the structure induced by a function
on its domain.

Exercise 1. For a function f with domain A (and arbitrary codomain), define two elements x, y ∈ A to be related if
and only if f(x) = f(y). Show that this is an equivalence relation, and moreover, that the quotient set has a bijective
mapping to the image of the function.
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