Bijections and Cardinality

CS 2800: Discrete Structures, Spring 2015

Sid Chaudhuri

Recap: Left and Right Inverses

- A function is *injective* (one-to-one) iff it has a *left inverse*
 - g: B → A is a left inverse of $f: A \to B$ if g(f(a)) = a for all $a \in A$
- A function is *surjective* (onto) iff it has a *right* inverse
 - $h: B \to A$ is a right inverse of $f: A \to B$ if f(h(b)) = b for all $b \in B$

Thought for the Day #1

Is a left inverse injective or surjective? Why?

Is a right inverse injective or surjective? Why?

(Hint: how is f related to its left/right inverse?)

Sur/injectivity of left/right inverses

- The left inverse is always surjective!
 - ... since f is its right inverse

- The right inverse is always injective!
 - ... since *f* is its left inverse

Factoid for the Day #1

If a function has both a left inverse and a right inverse, then the two inverses are identical, and this common inverse is unique

(Prove!)

This is called the *two-sided inverse*, or usually just the inverse f^{-1} of the function f

http://www.cs.cornell.edu/courses/cs2800/2015sp/handouts/jonpak_function_notes.pdf

Bijection and two-sided inverse

- A function *f* is bijective iff it has a two-sided inverse
- Proof (⇒): If it is bijective, it has a left inverse (since injective) and a right inverse (since surjective), which must be one and the same by the previous factoid
- Proof (⇐): If it has a two-sided inverse, it is both injective (since there is a left inverse) and surjective (since there is a right inverse). Hence it is bijective.

Inverse of a function

- The inverse of a bijective function $f: A \to B$ is the *unique* function $f^{-1}: B \to A$ such that for any $a \in A, f^{-1}(f(a)) = a$ and for any $b \in B, f(f^{-1}(b)) = b$
- A function is bijective iff it has an inverse function

Following Ernie Croot's slides

Inverse of a function

• If *f* is not a bijection, it cannot have an inverse function

Onto, not one-to-one $f^{-1}(2) = ?$

Inverse of a function

• If *f* is not a bijection, it cannot have an inverse function

One-to-one, not onto $f^{-1}(4) = ?$

How can we count elements in a set?

How can we count elements in a set?

- Easy for finite sets just count the elements!
- Does it even make sense to ask about the number of elements in an infinite set?
- Is it meaningful to say one infinite set is larger than another?
 - Are the natural numbers larger than
 - the even numbers?
 - the rational numbers?
 - the real numbers?

• If A and B are finite sets, clearly they have the same number of elements iff there is a bijection between them

- Definition: Set A has the same cardinality as set
 B, denoted |A| = |B|, iff there is a bijection from A to B
 - For finite sets, cardinality is the number of elements
 - There is a bijection from *n*-element set A to {1, 2, 3, ..., n}

Natural numbers and even numbers have the same cardinality

Sets having the same cardinality as the natural numbers (or some subset of the natural numbers) are called <u>countable sets</u>

Natural numbers and rational numbers have the same cardinality!

Illustrating proof only for positive rationals here, can be easily extended to all rationals

• The natural numbers and real numbers *do not* have the same cardinality

• The natural numbers and real numbers *do not* have the same cardinality

$$x_1$$
 $0.000000000...$
 Consider the number $y = 0.b_1 b_2 b_3...$
 x_2
 $0.103040501...$
 $y = 0.b_1 b_2 b_3...$
 x_3
 $0.987654321...$
 $b_i = \begin{cases} 1 \text{ if the } i^{\text{th}} \text{ decimal place of } x_i \text{ is zero } \\ 0 \text{ if it is non-zero } \end{cases}$
 x_4
 $0.012121212...$
 $y \text{ cannot be equal to any } x_i - \text{ it differs by one digit from each one!$

There are many infinities

NUMBERS AND COMMANE OF INFINITY ZERO FINITE N1 H2 Ha CARDINAL. 100 SUPERREALS SUPER NATURALS UG LINE TOPOLOG NO-D HILBERT SPACE NO-D SUR & ORDINAL ANALYSIS ORGANAL OLTONIONS?? OCTOM ant DRA GEDMETRY 00

Thought for the Day #2

Do the real interval [0, 1] and the unit square [0, 1] x [0, 1] have the same cardinality?

Comparing Cardinalities

• **Definition:** If there is an injective function from set *A* to set *B*, we say $|A| \leq |B|$

Comparing Cardinalities

- **Definition:** If there is an injective function from set A to set B, but not from B to A, we say |A| < |B|
- Cantor-Schröder-Bernstein theorem: If $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|
 - Exercise: prove this!
 - i.e. show that there is a bijection from A to B iff there are injective functions from A to B and from B to A
 - (it's not easy!)