Bijections and Cardinality

CS 2800: Discrete Structures, Spring 2015

Sid Chaudhuri

Recap: Left and Right Inverses

- A function is injective (one-to-one) iff it has a left inverse
- $g: B \rightarrow A$ is a left inverse of $f: A \rightarrow B$ if $g(f(a))=a$ for all $a \in A$
- A function is surjective (onto) iff it has a right inverse
- $h: B \rightarrow A$ is a right inverse of $f: A \rightarrow B$ if $f(h(b))=b$ for all $b \in B$

Thought for the Day \#1

Is a left inverse injective or surjective? Why?

Is a right inverse injective or surjective? Why?
(Hint: how is f related to its left/right inverse?)

Sur/injectivity of left/right inverses

- The left inverse is always surjective!
- ... since f is its right inverse
- The right inverse is always injective!
- ... since f is its left inverse

Factoid for the Day \#1

If a function has both a left inverse and a right inverse, then the two inverses are identical, and this common inverse is unique
(Prove!)

This is called the two-sided inverse, or usually just the inverse f^{-1} of the function f

Bijection and two-sided inverse

- A function f is bijective iff it has a two-sided inverse
- Proof (\Rightarrow) : If it is bijective, it has a left inverse (since injective) and a right inverse (since surjective), which must be one and the same by the previous factoid
- Proof (\Leftarrow) : If it has a two-sided inverse, it is both injective (since there is a left inverse) and surjective (since there is a right inverse). Hence it is bijective.

Inverse of a function

- The inverse of a bijective function $f: A \rightarrow B$ is the unique function $f^{-1}: B \rightarrow A$ such that for any $a \in A, f^{-1}(f(a))=a$ and for any $b \in B, f\left(f^{-1}(b)\right)=b$
- A function is bijective iff it has an inverse function

Inverse of a function

- If f is not a bijection, it cannot have an inverse function

Onto, not one-to-one

$$
f^{-1}(2)=?
$$

Inverse of a function

- If f is not a bijection, it cannot have an inverse function

One-to-one, not onto

$$
f^{-1}(4)=?
$$

How can we count elements in a set?

How can we count elements in a set?

- Easy for finite sets - just count the elements!
- Does it even make sense to ask about the number of elements in an infinite set?
- Is it meaningful to say one infinite set is larger than another?
- Are the natural numbers larger than
- the even numbers?
- the rational numbers?
- the real numbers?

Cardinality and Bijections

- If A and B are finite sets, clearly they have the same number of elements iff there is a bijection between them

$$
\text { e.g. }|\{x, y, z\}|=|\{1,2,3\}|=3
$$

Cardinality and Bijections

- Definition: Set A has the same cardinality as set B, denoted $|A|=|B|$, iff there is a bijection from A to B
- For finite sets, cardinality is the number of elements
- There is a bijection from n-element set A to $\{1,2,3, \ldots, n\}$

Cardinality and Bijections

- Natural numbers and even numbers have the same cardinality

Sets having the same cardinality as the natural numbers (or some subset of the natural numbers) are called countable sets

Cardinality and Bijections

- Natural numbers and rational numbers have the same cardinality!

Illustrating proof only for positive rationals here, can be easily extended to all rationals

Cardinality and Bijections

- The natural numbers and real numbers do not have the same cardinality
$\left.\begin{array}{l|llllllll}x_{1} & 0.000 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Cardinality and Bijections

- The natural numbers and real numbers do not have the same cardinality

| x_{1} | $0.000000000 \ldots$ | Consider the number
 $y=0 . b_{1} b_{2} b_{3} \ldots$ |
| :--- | :--- | :--- | :--- |
| x_{2} | $0.103040501 \ldots$ | |
| x_{3} | $0.987654321 \ldots$ | |
| x_{4} | $0.012121212 \ldots$ | |\(\quad b_{i}=\left\{\begin{array}{c}1 if the i^{th} decimal

place of x_{i} is zero

0 if it is non-zero\end{array}\right\}\)

There are many infinities

Thought for the Day \#2

Do the real interval $[0,1]$ and the unit square $[0,1] \times[0,1]$ have the same cardinality?

Comparing Cardinalities

- Definition: If there is an injective function from set A to set B, we say $|A| \leq|B|$

$$
\begin{aligned}
& \mid \text { Evens }|\leq|\mathrm{N}|
\end{aligned}
$$

Comparing Cardinalities

- Definition: If there is an injective function from set A to set B, but not from B to A, we say $|A|<|B|$
- Cantor-Schröder-Bernstein theorem: If $|A| \leq|B|$ and $|B| \leq|A|$, then $|A|=|B|$
- Exercise: prove this!
- i.e. show that there is a bijection from A to B iff there are injective functions from A to B and from B to A
- (it's not easy!)

