Functions and Inverses

CS 2800: Discrete Structures, Spring 2015

Sid Chaudhuri

- A relation between sets A (the *domain*) and B (the *codomain*) is a set of ordered pairs (a, b) such that $a \in A, b \in B$ (i.e. it is a subset of $A \times B$)
 - The relation maps each a to the corresponding b
 - Neither all possible *a*'s, nor all possible *b*'s, need be covered

product

- Can be one-one, one-many, many-one, many-many

- A **function** is a relation that maps **each** element of *A* to a **single** element of *B*
 - Can be one-one or many-one
 - All elements of A must be covered, though not necessarily all elements of B
 - Subset of *B* covered by the function is its *range/image*

 Instead of writing the function *f* as a set of pairs, we usually specify its domain and codomain as:

 $f: A \to B$

... and the mapping via a rule such as:

f(Heads) = 0.5, f(Tails) = 0.5

 Instead of writing the function *f* as a set of pairs, we usually specify its domain and codomain as:

 $f: A \to B$

... and the mapping via a rule such as:

f(Heads) = 0.5, f(Tails) = 0.5

or $f: x \mapsto x^2$

- Note: the function is f, not f(x)!
 - *f*(*x*) is the value assigned by
 the function *f* to input *x*

Recap: Injectivity

• A function is **injective** (one-to-one) if every element in the domain has a unique image in the codomain

- That is,
$$f(x) = f(y)$$
 implies $x = y$

Recap: Surjectivity

- A function if **surjective** (onto) if every element of the codomain has a preimage in the domain
 - That is, for every $b \in B$ there is some $a \in A$ such that f(a) = b
 - That is, the codomain is equal to the range/image

Recap: Surjectivity

- A function if **surjective** (onto) if every element of the codomain has a preimage in the domain
 - That is, for every $b \in B$ there is some $a \in A$ such that f(a) = b
 - That is, the codomain is equal to the range/image

Recap: Bijectivity

• A function is **bijective** if it is both surjective and injective

Composition of Functions

• The **composition** of two functions

$$f: B \to C$$
$$g: A \to B$$

is the function $f \circ g : A \rightarrow C$ defined as

$$f \circ g : x \mapsto f(g(x))$$

Composition of Functions

• The composition of two functions

 $f: B \to C$ $g \circ f \text{ is not possible}$ $g: A \to B$ is the function $f \circ g: A \to C$ defined as

$$f \circ g : x \mapsto f(g(x))$$

Factoid of the Day #1

Composition is *associative*

$$(f \circ g) \circ h = f \circ (g \circ h)$$

(two functions are equal if for every input, they give the same output)

Prove it!

Left Inverse of a Function

- $g: B \to A$ is a left inverse of $f: A \to B$ if g(f(a)) = a for all $a \in A$
 - If you follow the function from the domain to the codomain, the left inverse tells you how to go back to where you started

Left Inverse of a Function

- $g: B \to A$ is a left inverse of $f: A \to B$ if g(f(a)) = a for all $a \in A$
 - If you follow the function from the domain to the codomain, the left inverse tells you how to go back to where you started

Left Inverse of a Function

- $g: B \to A$ is a left inverse of $f: A \to B$ if g(f(a)) = a for all $a \in A$
 - If you follow the function from the domain to the codomain, the left inverse tells you how to go back to where you started

- $h: B \to A$ is a right inverse of $f: A \to B$ if f(h(b)) = b for all $b \in B$
 - If you're trying to get to a destination in the codomain, the right inverse tells you a possible place to start

- $h: B \to A$ is a right inverse of $f: A \to B$ if f(h(b)) = b for all $b \in B$
 - If you're trying to get to a destination in the codomain, the right inverse tells you a possible place to start

- $h: B \to A$ is a right inverse of $f: A \to B$ if f(h(b)) = b for all $b \in B$
 - If you're trying to get to a destination in the codomain, the right inverse tells you a possible place to start

- $h: B \to A$ is a right inverse of $f: A \to B$ if f(h(b)) = b for all $b \in B$
 - If you're trying to get to a destination in the codomain, the right inverse tells you a possible place to start

Note the subtle difference!

- The **left inverse** tells you how to *exactly* retrace your steps, *if* you managed to get to a destination
 - "Some places might be unreachable, but I can always put you on the return flight"
- The **right inverse** tells you where you *might* have come from, for *any* possible destination
 - "All places are reachable, but I can't put you on the return flight because I don't know exactly where you came from"

Factoid of the Day #2

Left and right inverses need not exist, and need not be unique

can you come up with some examples?

Left inverse ⇔ Injective

- Theorem: A function is injective (one-to-one) iff it has a left inverse
- **Proof** (\Leftarrow): Assume $f: A \rightarrow B$ has left inverse g
 - $\operatorname{lf} f(x) = f(y) \dots$
 - ... then g(f(x)) = g(f(y)) (any fn maps equals to equals)
 - ... i.e. x = y (since g is a left inverse)
 - Hence *f* is injective

Left inverse ⇔ Injective

- **Theorem:** A function is **injective** (one-to-one) **iff** it has a **left inverse**
- **Proof** (\Rightarrow): Assume $f: A \rightarrow B$ is injective
 - Pick any a_0 in A, and define g as

$$g(b) = \begin{cases} a & \text{if } f(a) = b \\ a_0 & \text{otherwise} \end{cases}$$

- This is a well-defined function: since f is injective,
 there can be at most a single a such that f(a) = b
- Also, if f(a) = b then g(f(a)) = a, by construction
- Hence g is a left inverse of \boldsymbol{f}

Right inverse ⇔ Surjective

- Theorem: A function is surjective (onto) iff it has a right inverse
- **Proof** (\Leftarrow): Assume $f: A \rightarrow B$ has right inverse h
 - For any $b \in B$, we can apply h to it to get h(b)
 - Since *h* is a right inverse, f(h(b)) = b
 - Therefore every element of B has a preimage in A
 - Hence *f* is surjective

Right inverse ⇔ Surjective

- Theorem: A function is surjective (onto) iff it has a right inverse
- **Proof** (\Rightarrow): Assume $f: A \rightarrow B$ is surjective
 - For every $b \in B$, there is a non-empty set $A_b \subseteq A$ such that for every $a \in A_b$, f(a) = b (since f is surjective)
 - Define $h: b \mapsto$ an arbitrary element of A_b
 - Again, this is a well-defined function since A_b is non-empty (and assuming the "axiom of choice"!)
 - Also, f(h(b)) = b for all $b \in B$, by construction
 - Hence h is a right inverse of f

Recap: Left and Right Inverses

- A function is *injective* (one-to-one) iff it has a *left inverse*
- A function is *surjective* (onto) iff it has a *right* inverse

Factoid for the Day #3

If a function has both a left inverse and a right inverse, then the two inverses are identical, and this common inverse is unique

(Prove!)

This is called the *two-sided inverse*, or usually just the inverse f^{-1} of the function f

http://www.cs.cornell.edu/courses/cs2800/2015sp/handouts/jonpak_function_notes.pdf

Bijection and two-sided inverse

- A function *f* is bijective iff it has a two-sided inverse
- Proof (⇒): If it is bijective, it has a left inverse (since injective) and a right inverse (since surjective), which must be one and the same by the previous factoid
- Proof (⇐): If it has a two-sided inverse, it is both injective (since there is a left inverse) and surjective (since there is a right inverse). Hence it is bijective.