Functions and Inverses

CS 2800: Discrete Structures, Spring 2015

Sid Chaudhuri

Recap: Relations and Functions

- A relation between sets A (the domain) and B (the codomain) is a set of ordered pairs (a, b) such that $a \in A, b \in B$ (i.e. it is a subset of $A \times B$)
- The relation maps each a to the corresponding b
- Neither all possible a 's, nor all possible b 's, need be covered
- Can be one-one, one-many, many-one, many-many

Recap: Relations and Functions

- A function is a relation that maps each element of A to a single element of B
- Can be one-one or many-one
- All elements of A must be covered, though not necessarily all elements of B
- Subset of B covered by the function is its range/image

Recap: Relations and Functions

- Instead of writing the function f as a set of pairs, we usually specify its domain and codomain as:

$$
f: A \rightarrow B
$$

... and the mapping via a rule such as:

$$
f(\text { Heads })=0.5, \quad f(\text { Tails })=0.5
$$

Recap: Relations and Functions

- Instead of writing the function f as a set of pairs, we usually specify its domain and codomain as:

$$
f: A \rightarrow B
$$

... and the mapping via a rule such as:

$$
f(\text { Heads })=0.5, \quad f(\text { Tails })=0.5
$$

$$
\text { or } f: x \mapsto x^{2}
$$

- Note: the function is f, not $f(x)$!
- $f(x)$ is the value assigned by the function f to input x
$f(x)$

Recap: Injectivity

- A function is injective (one-to-one) if every element in the domain has a unique image in the codomain
- That is, $f(x)=f(y)$ implies $x=y$

Recap: Surjectivity

- A function if surjective (onto) if every element of the codomain has a preimage in the domain
- That is, for every $b \in B$ there is some $a \in A$ such that $f(a)=b$
- That is, the codomain is equal to the range/image

Recap: Surjectivity

- A function if surjective (onto) if every element of the codomain has a preimage in the domain
- That is, for every $b \in B$ there is some $a \in A$ such that $f(a)=b$
- That is, the codomain is equal to the range/image

Recap: Bijectivity

- A function is bijective if it is both surjective and injective

Composition of Functions

- The composition of two functions

$$
\begin{gathered}
f: B \rightarrow C \\
g: A \rightarrow B
\end{gathered}
$$

is the function $f \circ g: A \rightarrow C$ defined as

$$
f \circ g: x \mapsto f(g(x))
$$

Composition of Functions

- The composition of two functions

$$
\begin{array}{ll}
f: B \rightarrow C \\
g: A \rightarrow B
\end{array} \quad g \circ f \text { is not possible }
$$

is the function $f \circ g: A \rightarrow C$ defined as

$$
f \circ g: x \mapsto f(g(x))
$$

Factoid of the Day \#1

Composition is associative

$$
(f \circ g) \circ h=f \circ(g \circ h)
$$

(two functions are equal if for every input, they give the same output)
Prove it!

Left Inverse of a Function

- $g: B \rightarrow A$ is a left inverse of $f: A \rightarrow B$ if $g(f(a))=a$ for all $a \in A$
- If you follow the function from the domain to the codomain, the left inverse tells you how to go back to where you started

Left Inverse of a Function

- $g: B \rightarrow A$ is a left inverse of $f: A \rightarrow B$ if $g(f(a))=a$ for all $a \in A$
- If you follow the function from the domain to the codomain, the left inverse tells you how to go back to where you started

Left Inverse of a Function

- $g: B \rightarrow A$ is a left inverse of $f: A \rightarrow B$ if $g(f(a))=a$ for all $a \in A$
- If you follow the function from the domain to the codomain, the left inverse tells you how to go back to where you started

Right Inverse of a Function

- $h: B \rightarrow A$ is a right inverse of $f: A \rightarrow B$ if $f(h(b))=b$ for all $b \in B$
- If you're trying to get to a destination in the codomain, the right inverse tells you a possible place to start

Right Inverse of a Function

- $h: B \rightarrow A$ is a right inverse of $f: A \rightarrow B$ if $f(h(b))=b$ for all $b \in B$
- If you're trying to get to a destination in the codomain, the right inverse tells you a possible place to start

Right Inverse of a Function

- $h: B \rightarrow A$ is a right inverse of $f: A \rightarrow B$ if $f(h(b))=b$ for all $b \in B$
- If you're trying to get to a destination in the codomain, the right inverse tells you a possible place to start

Right Inverse of a Function

- $h: B \rightarrow A$ is a right inverse of $f: A \rightarrow B$ if $f(h(b))=b$ for all $b \in B$
- If you're trying to get to a destination in the codomain, the right inverse tells you a possible place to start

Note the subtle difference!

- The left inverse tells you how to exactly retrace your steps, if you managed to get to a destination
- "Some places might be unreachable, but I can always put you on the return flight"
- The right inverse tells you where you might have come from, for any possible destination
- "All places are reachable, but I can't put you on the return flight because I don't know exactly where you came from"

Factoid of the Day \#2

Left and right inverses need not exist, and need not be unique
can you come up with some examples?

Left inverse \Leftrightarrow Injective

- Theorem: A function is injective (one-to-one) iff it has a left inverse
- Proof (\Leftarrow) : Assume $f: A \rightarrow B$ has left inverse g
- If $f(x)=f(y)$...
- ... then $g(f(x))=g(f(y)) \quad$ (any fn maps equals to equals)
- ... i.e. $x=y$
(since g is a left inverse)
- Hence f is injective

Left inverse \Leftrightarrow Injective

- Theorem: A function is injective (one-to-one) iff it has a left inverse
- Proof (\Rightarrow) : Assume $f: A \rightarrow B$ is injective
- Pick any a_{0} in A, and define g as

$$
g(b)= \begin{cases}a & \text { if } f(a)=b \\ a_{0} & \text { otherwise }\end{cases}
$$

- This is a well-defined function: since f is injective, there can be at most a single a such that $f(a)=b$
- Also, if $f(a)=b$ then $g(f(a))=a$, by construction
- Hence g is a left inverse of f

Right inverse \Leftrightarrow Surjective

- Theorem: A function is surjective (onto) iff it has a right inverse
- Proof (\Leftarrow) : Assume $f: A \rightarrow B$ has right inverse h
- For any $b \in B$, we can apply h to it to get $h(b)$
- Since h is a right inverse, $f(h(b))=b$
- Therefore every element of B has a preimage in A
- Hence f is surjective

Right inverse \Leftrightarrow Surjective

- Theorem: A function is surjective (onto) iff it has a right inverse
- Proof (\Rightarrow) : Assume $f: A \rightarrow B$ is surjective
- For every $b \in B$, there is a non-empty set $A_{b} \subseteq A$ such that for every $a \in A_{b}, f(a)=b \quad$ (since f is surjective)
- Define $h: b \mapsto$ an arbitrary element of A_{b}
- Again, this is a well-defined function since A_{b} is non-empty (and assuming the "axiom of choice"!)
- Also, $f(h(b))=b$ for all $b \in B$, by construction
- Hence h is a right inverse of f

Recap: Left and Right Inverses

- A function is injective (one-to-one) iff it has a left inverse
- A function is surjective (onto) iff it has a right inverse

Factoid for the Day \#3

If a function has both a left inverse and a right inverse, then the two inverses are identical, and this common inverse is unique
(Prove!)

This is called the two-sided inverse, or usually just the inverse f^{-1} of the function f

Bijection and two-sided inverse

- A function f is bijective iff it has a two-sided inverse
- Proof (\Rightarrow) : If it is bijective, it has a left inverse (since injective) and a right inverse (since surjective), which must be one and the same by the previous factoid
- Proof (\Leftarrow) : If it has a two-sided inverse, it is both injective (since there is a left inverse) and surjective (since there is a right inverse). Hence it is bijective.

