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Recap: Relations and Functions
● A relation between sets A (the domain) and B (the 

codomain) is a set of ordered pairs (a, b) such that 
a ∈ A, b ∈ B (i.e. it is a subset of A × B)
– The relation maps each a to the corresponding b

● Neither all possible a's, nor all possible b's, need be covered

– Can be one-one, one-many, many-one, many-many
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Recap: Relations and Functions
● A function is a relation that maps each element 

of A to a single element of B
– Can be one-one or many-one
– All elements of A must be covered, though not 

necessarily all elements of B
– Subset of B covered by the function is its range/image
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Recap: Relations and Functions
● Instead of writing the function f as a set of pairs, 

we usually specify its domain and codomain as:
f : A → B

… and the mapping via a rule such as:
f (Heads) = 0.5,   f (Tails) = 0.5

or  f : x ↦ x2

The function f maps x to x2



Recap: Relations and Functions
● Instead of writing the function f as a set of pairs, 

we usually specify its domain and codomain as:
f : A → B

… and the mapping via a rule such as:
f (Heads) = 0.5,   f (Tails) = 0.5

or  f : x ↦ x2

● Note: the function is f, not f(x)!
– f(x) is the value assigned by

the function f to input x
x

f(x)

f



Recap: Injectivity

● A function is injective (one-to-one) if every 
element in the domain has a unique image in the 
codomain
– That is, f(x) = f(y) implies x = y

NY
MA
CA

Albany

Sacramento
Boston

...

A B
...

New York



Recap: Surjectivity

● A function if surjective (onto) if every element of 
the codomain has a preimage in the domain
– That is, for every b ∈ B there is some a ∈ A such that 

f(a) = b

– That is, the codomain is equal to the range/image
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Recap: Surjectivity

● A function if surjective (onto) if every element of 
the codomain has a preimage in the domain
– That is, for every b ∈ B there is some a ∈ A such that 

f(a) = b

– That is, the codomain is equal to the range/image

Still Winter
Road Construction

Almost Winter

A BWinter

August
September

October
November
December

January
February

March
April
May
June
July

(Ithaca etc)



Recap: Bijectivity

● A function is bijective if it is both surjective and 
injective
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Composition of Functions
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● The composition of two functions
f : B → C

g : A → B

is the function f ○ g : A → C defined as

f ○ g : x   ↦  f ( g (x) )



Composition of Functions
● The composition of two functions

f : B → C

g : A → B

is the function f ○ g : A → C defined as

f ○ g : x   ↦  f ( g (x) )
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g ○ f  is not possible 
unless A = C !



Factoid of the Day #1

Composition is associative

(f ○ g) ○ h  =  f ○ (g ○ h)

(two functions are equal if for every input, they give the same output)

Prove it!
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Left Inverse of a Function

● g : B → A is a left inverse of f : A → B if
g ( f (a) ) = a for all a ∈ A

– If you follow the function from the domain to the 
codomain, the left inverse tells you how to go back to 
where you started
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Left Inverse of a Function

● g : B → A is a left inverse of f : A → B if
g ( f (a) ) = a for all a ∈ A

– If you follow the function from the domain to the 
codomain, the left inverse tells you how to go back to 
where you started
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Left Inverse of a Function

● g : B → A is a left inverse of f : A → B if
g ( f (a) ) = a for all a ∈ A

– If you follow the function from the domain to the 
codomain, the left inverse tells you how to go back to 
where you started
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f
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Right Inverse of a Function

● h : B → A is a right inverse of f : A → B if
f ( h (b) ) = b for all b ∈ B

– If you're trying to get to a destination in the codomain, 
the right inverse tells you a possible place to start
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Right Inverse of a Function

● h : B → A is a right inverse of f : A → B if
f ( h (b) ) = b for all b ∈ B

– If you're trying to get to a destination in the codomain, 
the right inverse tells you a possible place to start
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Right Inverse of a Function

● h : B → A is a right inverse of f : A → B if
f ( h (b) ) = b for all b ∈ B

– If you're trying to get to a destination in the codomain, 
the right inverse tells you a possible place to start

h(b) b

hA B



Right Inverse of a Function

● h : B → A is a right inverse of f : A → B if
f ( h (b) ) = b for all b ∈ B

– If you're trying to get to a destination in the codomain, 
the right inverse tells you a possible place to start

h(b) b

f

hA B



Note the subtle difference!

● The left inverse tells you how to exactly retrace 
your steps, if you managed to get to a destination
– “Some places might be unreachable, but I can always 

put you on the return flight”

● The right inverse tells you where you might have 
come from, for any possible destination
– “All places are reachable, but I can't put you on the 

return flight because I don't know exactly where you 
came from”



Factoid of the Day #2

Left and right inverses need not exist, 
and need not be unique

Can you come up with some examples?



Left inverse ⇔ Injective

● Theorem: A function is injective (one-to-one) iff 
it has a left inverse

● Proof (⇐): Assume f : A → B has left inverse g
– If f(x) = f(y) ...
– … then g(f(x)) = g(f(y))    (any fn maps equals to equals)

– … i.e. x = y                     (since g is a left inverse)
– Hence f is injective



Left inverse ⇔ Injective
● Theorem: A function is injective (one-to-one) iff 

it has a left inverse
● Proof (⇒): Assume f : A → B is injective

– Pick any a
0
 in A, and define g as

a    if f(a) = b
a

0
   otherwise

– This is a well-defined function: since f is injective, 
there can be at most a single a such that f(a) = b

– Also, if f(a) = b then g(f(a)) = a, by construction
– Hence g is a left inverse of f

g(b) = 



Right inverse ⇔ Surjective

● Theorem: A function is surjective (onto) iff it has 
a right inverse

● Proof (⇐): Assume f : A → B has right inverse h
– For any b ∈ B, we can apply h to it to get h(b)

– Since h is a right inverse, f(h(b)) = b

– Therefore every element of B has a preimage in A
– Hence f is surjective



Right inverse ⇔ Surjective
● Theorem: A function is surjective (onto) iff it has 

a right inverse
● Proof (⇒): Assume f : A → B is surjective

– For every b ∈ B, there is a non-empty set A
b
 ⊆ A such 

that for every a ∈ A
b
, f(a) = b   (since f is surjective)

– Define h : b ↦ an arbitrary element of A
b

– Again, this is a well-defined function since A
b
 is 

non‑empty (and assuming the “axiom of choice”!)
– Also, f(h(b)) = b for all b ∈ B, by construction
– Hence h is a right inverse of f



Recap: Left and Right Inverses

● A function is injective (one-to-one) iff it has a left 
inverse

● A function is surjective (onto) iff it has a right 
inverse



Factoid for the Day #3

If a function has both a left inverse and a right 
inverse, then the two inverses are identical, and this 

common inverse is unique

(Prove!)

This is called the two-sided inverse, or usually just the 
inverse f –1 of the function f

http://www.cs.cornell.edu/courses/cs2800/2015sp/handouts/jonpak_function_notes.pdf

http://www.cs.cornell.edu/courses/cs2800/2015sp/handouts/jonpak_function_notes.pdf


Bijection and two-sided inverse
● A function f is bijective iff it has a two-sided 

inverse
● Proof (⇒): If it is bijective, it has a left inverse 

(since injective) and a right inverse (since 
surjective), which must be one and the same by 
the previous factoid

● Proof (⇐): If it has a two-sided inverse, it is both 
injective (since there is a left inverse) and 
surjective (since there is a right inverse). Hence it 
is bijective.
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