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Independence of Events

Two events A and B in a probability space are 
independent if and only if

P(A ∩ B)  =  P(A) P(B)

Mathematical definition of independence



WTF?
Why does this even make sense?
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P(A∩B)=P (A)P(B)



Conditional Probability

P(B∣A)

The conditional probability of B, given A, is written



Conditional Probability

P(B∣A)

The conditional probability of B, given A, is written

The probability of



Conditional Probability

P(B∣A)

The conditional probability of B, given A, is written

The probability of

B



Conditional Probability

P(B∣A)

The conditional probability of B, given A, is written

The probability of

B

given



Conditional Probability

P(B∣A)

The conditional probability of B, given A, is written

The probability of

B

given

A



Conditional Probability

P (A∩B)
P(A)

P(B∣A)

The conditional probability of B, given A, is written

and defined as



Conditional Probability

P (A∩B)
P(A)

P(B∣A)

The conditional probability of B, given A, is written

and defined as



WTF #2?
Why does this make sense?



Intuitively, P(B | A) is the probability that event B 
occurs, given that event A has already occurred

(This is NOT the formal math definition)

(A and B need not actually occur in temporal order)
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A∩B

acts as new sample space
(“universe of outcomes
where A happens”)

all outcomes where B
happens, in this restricted
space, i.e. given that A is
known to have happened



Thought for the Day #1

If the conditional probability P(B | A) is defined as
P(A ∩ B) / P(A), and P(A) ≠ 0, then show that (A, Q), 

where Q(B) = P(B | A), is a valid probability space 
satisfying Kolmogorov's axioms.



Independence of Events
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(by definition)

P(A ∩ B)  =  P(B)  P(A)

(if independent)
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Independence of Events

In other words, assuming P(A) ≠ 0, A and B 
are independent if and only if

P(B | A)  =  P(B)

(Intuitively: the probability of B happening is 
unaffected by whether A is known to have happened)

(Note: A and B can be swapped, if P(B) ≠ 0)



Bayes' Theorem

Assuming P(A), P(B) ≠ 0,

P(A∣B)=
P(B∣A)P(A)

P (B)



Bayes' Theorem

Assuming P(A), P(B) ≠ 0,

since P(A | B) P(B) = P(A ∩ B) = P(B | A) P(A)
(by definition of conditional probability)

P(A∣B)=
P(B∣A)P(A)

P (B)



Bayes' Theorem

Assuming P(A), P(B) ≠ 0,

since P(A | B) P(B) = P(A ∩ B) = P(B | A) P(A)
(by definition of conditional probability)

P(A∣B)=
P(B∣A)P(A)

P (B)

Prior probability of A



Bayes' Theorem

Assuming P(A), P(B) ≠ 0,

since P(A | B) P(B) = P(A ∩ B) = P(B | A) P(A)
(by definition of conditional probability)

P(A∣B)=
P(B∣A)P(A)

P (B)

Prior probability of A

Posterior
probability of A, given evidence B



How do we estimate P(B)?

● Theorem of Total Probability (special case):

If P(A) ≠ 0 or 1,

P(B)   =   P((B ∩ A)  ∪  (B ∩ A'))
          =   P(B ∩ A)  +  P(B ∩ A')                   (Axiom 3)

        =   P(B | A) P(A)  +  P(B | A') P(A')    (Definition of
                                                                conditional probability)
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● Suppose:
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pretty reliable test
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Example: Medical Diagnosis

● Suppose:
– 1 in 1000 people carry a disease, for which there is a 

pretty reliable test
– Probability of a false negative (carrier tests negative) is 

1% (so probability of carrier testing positive is 99%)
– Probability of a false positive (non-carrier tests 

positive) is 5%
● A person just tested positive. What are the 

chances (s)he is a carrier of the disease?



Example: Medical Diagnosis

● Priors:

– P(Carrier) = 0.001
– P(NotCarrier) = 1 – 0.001 = 0.999



Example: Medical Diagnosis

● Priors:

– P(Carrier) = 0.001
– P(NotCarrier) = 1 – 0.001 = 0.999

● Conditional probabilities:

– P(Positive | Carrier) = 0.99
– P(Positive | NotCarrier) = 0.05



Example: Medical Diagnosis

P(Carrier | Positive)

    =  P(Positive | Carrier)  P(Carrier)

                          P(Positive) (by Bayes' Theorem)



Example: Medical Diagnosis

P(Carrier | Positive)

    =  P(Positive | Carrier)  P(Carrier)

                          P(Positive)

    =  P(Positive | Carrier)  P(Carrier)

         P(Positive | Carrier) P(Carrier)
 + P(Positive | NotCarrier) P(NotCarrier)( )

(by Bayes' Theorem)

(by Theorem of Total Probability)



Example: Medical Diagnosis

        P(Positive | Carrier)  P(Carrier)

         P(Positive | Carrier) P(Carrier)
 + P(Positive | NotCarrier) P(NotCarrier)

=                      0.99 × 0.001

          0.99 × 0.001  +  0.05 × 0.999

=       0.0194

( )



XKCD
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