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Thought for the Day #0

What are the chances Cornell will
declare a snow day?



New York Zoological Society



Thought for the Day #1

After how many years will a monkey produce the 
Complete Works of Shakespeare with more than 

50% probability?



Thought for the Day #1

After how many years will a monkey produce the 
Complete Works of Shakespeare with more than 

50% probability?

(or just an intelligible tweet?)



Elements of Probability Theory

● Outcome
● Sample Space
● Event
● Probability Space



Miramax



Heads Tails

playingintheworldgame.wordpress.com
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Heads Tails

playingintheworldgame.wordpress.com

Sample Space



Sample Space

Set of all possible outcomes of an 
experiment



Some Sample Spaces

● Coin toss:  {     ,     }

● Die roll:   {    ,    ,    ,    ,    ,    } 

● Weather:  {    ,    ,    ,    } 



Sample Space

Set of all mutually exclusive possible 
outcomes of an experiment



Event

Subset of sample space



Some Events

● Event of a coin landing heads:  {     } 
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Some Events

● Event of a coin landing heads:  {     } 

● Event of an odd die roll:   {    ,    ,    } 
 

● Event of weather like Ithaca:

{    ,    ,    ,    } 

● Event of weather like California:  {    } 



Careful!
● The sample space is a set (of outcomes)
● An outcome is an element of a sample space
● An event is a set (a subset of the sample space)

– It can be empty (the null event { } or ∅, which never 
happens)

– It can contain a single outcome (simple/elementary 
event)

– It can be the entire sample space (certain to happen)

● Strictly speaking, an outcome is not an event (it's 
not even an elementary event)



Probability Space

Sample space S

… plus function P assigning real-valued 
probabilities P(E) to events E ⊆ S

… satisfying Kolmogorov's axioms

All three are needed!



Kolmogorov's Axioms

1.  For any event E, we have P(E) ≥ 0 
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Kolmogorov's Axioms

1.  For any event E, we have P(E) ≥ 0 

2.  P(S) = 1

3.  If a countable set of events E
1
, E

2
, E

3
, … are 

pairwise disjoint (“mutually exclusive”), then

P(E
1
 ∪ E

2
 ∪ E

3
 ∪ …)  =  P(E

1
) + P(E

2
) + P(E

3
) + …

A countable set of events can be indexed by the natural 
numbers  as “first event”, “second event”, “third event” and 
so on.  We'll see a formal definition of countability later, 
but for now you don't need to worry about this too much.
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Can you prove these from the axioms?

● In a valid probability 
space (S, P)

– P(E') = 1 – P(E) for any 
event E

1.  For any event E, we have P(E) ≥ 0 

2.  P(S) = 1

3.  If events E
1
, E

2
, E

3
, … are pairwise 

disjoint (“mutually exclusive”), then

P(E
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2
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3
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1
) + P(E

2
) + P(E

3
) + …

Space for boardwork



Can you prove these from the axioms?

● In a valid probability 
space (S, P)

– P(E') = 1 – P(E) for any 
event E

– P(∅) = 0

1.  For any event E, we have P(E) ≥ 0 

2.  P(S) = 1
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Equiprobable Probability Space

● All outcomes equally likely (fair coin, fair die...)

● Laplace's definition of probability (only in finite 
equiprobable space!)

P(E)=
|E|
|S|



Equiprobable Probability Space

● All outcomes equally likely (fair coin, fair die...)

● Laplace's definition of probability (only in finite 
equiprobable space!)

P(E)=
|E|
|S|

Number of
elements

(outcomes)
in E

Number of elements
(outcomes) in S



Tim Stellmach, Wikipedia
N

P(event that
    sum is N)



Gerolamo Cardano
(1501-1576)

Liar, gambler, lecher, heretic

saderpo@glogster
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