Probability 101

CS 2800: Discrete Structures, Spring 2015

Sid Chaudhuri

Thought for the Day \#0

What are the chances Cornell will declare a snow day?

Thought for the Day \#1

After how many years will a monkey produce the Complete Works of Shakespeare with more than 50\% probability?

Thought for the Day \#1

After how many years will a monkey produce the Complete Works of Shakespeare with more than 50\% probability?
(or just an intelligible tweet?)

Elements of Probability Theory

- Outcome
- Sample Space
- Event
- Probability Space

Heads

Tails

Outcomes

Sample Space

Sample Space

Set of all possible outcomes of an experiment

Some Sample Spaces

- Coin toss: $\{@, @$
- Die roll: $\{\bullet, \because, \because, \because, \because \because, \because:\}$

Sample Space

Set of all mutually exclusive possible outcomes of an experiment

Event

Subset of sample space

Some Events

- Event of a coin landing heads:

Some Events

- Event of a coin landing heads: $\left\{5^{3}\right\}$
- Event of an odd die roll: $\{\bullet, \bullet \bullet \cdot, \bullet \bullet\}$

Some Events

- Event of a coin landing heads: $\left\{3^{3}\right\}$
- Event of an odd die roll: $\{\bullet, \bullet \bullet \cdot, \bullet \bullet\}$
- Event of weather like Ithaca:

Some Events

- Event of a coin landing heads: $\left\{\int^{3}\right\}$
- Event of an odd die roll:

- Event of weather like Ithaca:
- Event of weather like California: $\{$, $\}$

Careful!

- The sample space is a set (of outcomes)
- An outcome is an element of a sample space
- An event is a set (a subset of the sample space)
- It can be empty (the null event \{ \} or \varnothing, which never happens)
- It can contain a single outcome (simple/elementary event)
- It can be the entire sample space (certain to happen)
- Strictly speaking, an outcome is not an event (it's not even an elementary event)

Probability Space

Sample space S

... plus function P assigning real-valued probabilities $P(E)$ to events $E \subseteq S$
... satisfying Kolmogorov's axioms

All three are needed!

Kolmogorov's Axioms

1. For any event E, we have $P(E) \geq 0$

Kolmogorov's Axioms

1. For any event E, we have $P(E) \geq 0$
2. $P(S)=1$

Kolmogorov's Axioms

1. For any event E, we have $P(E) \geq 0$
2. $P(S)=1$ numbers as "first event", "second event", "third event" and
3. If a countable set of events $E_{1}, E_{2}, E_{3}, \ldots$ are pairwise disjoint ("mutually exclusive"), then

$$
P\left(E_{1} \cup E_{2} \cup E_{3} \cup \ldots\right)=P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right)+\ldots
$$

Kolmogorov's Axioms

1. For any event E, we have $P(E) \geq 0$
numbers as "first event", "second event", "third event" and
2. $P(S)=1$ so on. We'll see a formal definition of countability later, but for now you don't need to worry about this too much.
3. If a countable set of events $E_{1}, E_{2}, E_{3}, \ldots$ are pairwise disjoint ("mutually exclusive"), then

$$
P\left(E_{1} \cup E_{2} \cup E_{3} \cup \ldots\right)=P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right)+\ldots
$$

Can you prove these from the axioms?

- In a valid probability space (S, P)
- $P\left(E^{\prime}\right)=1-P(E)$ for any event E

1. For any event E, we have $P(E) \geq 0$
2. $P(S)=1$
3. If events $E_{1}, E_{2}, E_{3}, \ldots$ are pairwise disjoint ("mutually exclusive"), then

$$
\begin{aligned}
& P\left(E_{1} \cup E_{2} \cup E_{3} \cup \ldots\right)= \\
& \\
& P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right)+\ldots
\end{aligned}
$$

Space for boardwork

Can you prove these from the axioms?

- In a valid probability space (S, P)
- $P\left(E^{\prime}\right)=1-P(E)$ for any event E
- $P(\varnothing)=0$

1. For any event E, we have $P(E) \geq 0$
2. $P(S)=1$
3. If events $E_{1}, E_{2}, E_{3}, \ldots$ are pairwise disjoint ("mutually exclusive"), then

$$
\begin{aligned}
& P\left(E_{1} \cup E_{2} \cup E_{3} \cup \ldots\right)= \\
& \quad P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right)+\ldots
\end{aligned}
$$

Space for boardwork

Equiprobable Probability Space

- All outcomes equally likely (fair coin, fair die...)
- Laplace's definition of probability (only in finite equiprobable space!)

$$
P(E)=\frac{|E|}{|S|}
$$

Equiprobable Probability Space

- All outcomes equally likely (fair coin, fair die...)
- Laplace's definition of probability (only in finite equiprobable space!)

P(event that sum is N)

Gerolamo Cardano (1501-1576)

Liar, gambler, lecher, heretic

