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Negating Quantified Statements

● It is not the case that every x has property F(x)
⇔ there is some x without property F(x)

¬(∀x, F(x))  ⇔  ∃x, ¬F(x)     

● It is not the case that there is some x with 
property F(x) ⇔ every x lacks property F(x)

¬(∃x, F(x))  ⇔  ∀x, ¬F(x)     

● “Flip leftmost quantifier, move negation one step rightwards”



Examples

● Negation of ∀x, ¬F(x)

    ¬(∀x, ¬F(x))

⇔ ∃x, ¬¬F(x)

⇔ ∃x, F(x)

– Double negative ⇔ positive:

“It is not the case that everyone lacks empathy”
⇔ “Someone has empathy”

“Flip leftmost quantifier, move negation one step rightwards”



Examples

● Negation of ∀x, ∀y, F(x, y)

    ¬(∀x, ∀y, F(x, y))

⇔ ∃x, ¬(∀y, F(x, y))

⇔ ∃x, ∃y, ¬F(x, y)

– “It is not the case that every two people are friends”
⇔ “Some two people aren't friends”

“Flip leftmost quantifier, move negation one step rightwards”



Negating Quantified Statements

¬(∀x, F(x))  ⇔  ∃x, ¬F(x)

¬(∃x, F(x))  ⇔  ∀x, ¬F(x)

“Flip leftmost quantifier, move negation one step rightwards”

Space for boardwork



Common Types of Proofs

● Direct proof
– Start with something known to be true
– Repeatedly derive a statement that is implied by the 

previous one(s), until arriving at the conclusion
– Application of modus ponens: P, P ⇒ Q   ⊨  Q

● Proof that if m, n are perfect squares, so is mn:
– Since m and n are perfect squares, m = k2, n = l2, for some 

integers k and l

– Hence mn = k2l2 = (kl)2

– Since kl is an integer, mn is a perfect square



Common Types of Proofs
● Proof by contradiction

– Assume the statement to be proved is false
– Show that it implies an absurd or contradictory conclusion
– Hence the initial statement must be true
– Application of modus tollens: P ⇒ Q, ¬Q   ⊨  ¬P

● Proof that there is no greatest integer:
– Assume that there is in fact a greatest integer n

– But n + 1 is an integer which is greater than n

– This is a contradiction, so there cannot be a greatest integer



Common Types of Proofs

● Disproof by counterexample
– Statement must be of the form “Every x satisfies F(x)”
– Disprove it by finding some x that does not satisfy F(x)

– Application of quantifier negation: ¬(∀x, F(x)) ⇔ ∃x, ¬F(x)

● Disproof that for all reals a, b, if a2 = b2 then a = b

– Let a = 1, b = -1, which are real numbers

– Then a2 = b2 = 1, but a ≠ b

– Hence the statement is false

It's not enough to just state the counterexample, you 
should explain why it is a counterexample as well!



Thought for the Day #1

The different types of proofs are strongly related, 
indeed they're all variants of the same rule of logical 

inference. Can you figure out how, for example, 
disproof by counterexample is nothing but a version 

of proof by contradiction?



How much detail is enough?

● Know your audience
● Too little detail leaves 

the reader skeptical that 
your steps actually 
check out

● Too much detail 
overwhelms the reader, 
who can no longer 
follow your argument “I THINK YOU SHOULD BE MORE

EXPLICIT HERE IN STEP TWO.”

Sidney Harris



Hierarchy of Detail

There are no integers  x, y, z, n  s.t.  n > 2 and xn + yn = zn

⇒ ⇒

⇒ ⇒ ⇒⇒ ⇒⇒
2 + 2 = 4 1 is an integer 2 + 2 = 4¬ ¬X = X 3 is prime 0 = 0

⋯
 ⇒

 ⋯
⋯

 ⇒
 ⋯
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Detail limitProof

Determined 
from 3 
criteria: 
(1) audience, 
(2) not too 
little, (3) not 
too much.

Learned from 
experience!
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Building New Sets from Old Ones

● A ∪ B  (read 'A union B')  consists of all elements 
in A or in B (or both!)

● A ∩ B  (read 'A intersection B')  consists of all 
elements in both A and B

● A \ B  (read 'A minus B')  consists of all elements in 
A but not in B

● A'  (read 'A complement')  consists of all elements 
not in A  (that is, � \ A, where � is a suitably 
chosen “universal set”)



Set Relations

● Set A is a subset of set B if and only if every 
element of A is also present in B   (definition)

– B is a superset of A

● Sets A and B are equal if and only if A ⊆ B and 
B ⊆ A   (definition)

– Formally, proving two sets to be equal requires showing 
containment in both directions, but we will often use 
standard results as shortcuts, e.g. X \ Y = X ∩ Y'  or 
X ∩ X' = ∅

Exercise: prove these results from the definitions above
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