Logic and Quantifiers

CS 2800: Discrete Structures, Spring 2015

Sid Chaudhuri

- Primitive/atomic symbols/statements
 - $P \equiv$ "lt's sunny"

. . .

- $Q \equiv$ "I'm out running"
- $R \equiv$ "Mary had a little lamb"
- $S \equiv$ "Colorless green ideas sleep furiously"

- Logical connectives
 - and (\wedge)
 - "P and Q", or " $P \land Q$ " (it's sunny and I'm out running)

- or (v)

- "P or Q", or "P $\vee Q$ " (it's sunny or I'm out running)
- not (¬)
 - "not *P*" or "¬*P*" (*it's not sunny*)
- implies (\Rightarrow)
 - "if P, then Q" or " $P \Rightarrow Q$ " (if it's sunny, then I'm out running)
- is implied by (\Leftarrow)
 - "Q, if P" or " $Q \leftarrow P$ " (I'm out running, if it's sunny)
- if and only if (\Leftrightarrow)
 - "P if and only if Q" or " $Q \Leftrightarrow P$ " (I'm out running if and only if it's sunny)

When writing proofs, prefer plain English.

⇒ or ⇔ can be used judiciously to denote a chain of reasoning.

- Inference rules
 - Modus ponens: If P is true, and P implies Q, then Q must be true = entails
 - $P, P \Rightarrow Q \models Q$
 - Premise 1: PPremise 2: $P \Rightarrow Q$ Conclusion: Q
 - Premise 1: It's sunny
 Premise 2: If it's sunny, then I'm out running
 Conclusion: I'm out running

- Inference rules
 - Modus ponens: If P is true, and P implies Q, then Q must be true
 - Cornerstone of direct proofs
 - If the first statement in a chain of forward implications is true, modus ponens lets us conclude that the last statement must also be true
 - Premise 1: S₀ ⇒ S₁ ⇒ S₂ ⇒ ... ⇒ S_n ⇒ S
 Premise 2: S₀
 Conclusion (after recursively applying modus ponens): S
 - This is not the only possible inference rule
 - e.g. *Modus tollens*: $P \Rightarrow Q, \neg Q \models \neg P$ (proof by contradiction)

First-Order Logic

- Just like propositional logic, but introduces
 - Variables: *x*, *y*, *z*, ...
 - Predicates: P(x), Q(x), R(x), ...
 - Quantifiers: ∀ ("for all"), ∃ ("there exists")
- Every x has property F(x): $\forall x, F(x)$
- There is some x with property F(x): $\exists x, F(x)$
- "All men are mortal" : $\forall x, Man(x) \Rightarrow Mortal(x)$
 - Painstakingly: "for every object, if it is a man, then it is mortal"
- "Somebody here is asleep" : $\exists x \in Humans, Here(x) \land Asleep(x)$
 - Painstakingly: "there exists a human being who is here and who is asleep"

Thought for the Day #1

Is this statement true or false?

"All eleven-legged alligators have orange and blue spots"

This statement is *true*!!!

... else there would be an eleven-legged alligator (which lacks orange spots, or blue spots, or both)

Any statement about each member of an empty set is always true

- All dogs have fleas
 - There is a dog which has no fleas
- There is a horse that can add
 - No horse can add
- Every koala can climb
 - Some koala cannot climb

- Everybody in this class likes mathematics
 - Somebody in this class does not like mathematics

- There exists a pig that can swim and catch fish
 - No pig can both swim and catch fish
- In every country, there is a city by a river
 - In some country, there is no city by a river
- Old MacDonald had a farm, and on that farm he had a cow
 - Old MacDonald either had no farm, or had a farm without cows

- In every mathematics class there is some student who falls asleep during lectures
 - There is a mathematics class in which no student falls asleep during lectures
- "There must be some way out of here" said the joker to the thief
 - The joker did not say to the thief: "There must be some way out of here"
- To every thing there is a season
 - To some thing, there is no season

It is not the case that every x has property F(x)
 ⇔ there is some x without property F(x)

$$\neg(\forall x, F(x)) \Leftrightarrow \exists x, \neg F(x)$$

• It is **not** the case that there is **some** x **with** property $F(x) \Leftrightarrow$ **every** x **lacks** property F(x)

$$\neg(\exists x, F(x)) \Leftrightarrow \forall x, \neg F(x)$$

• "Flip leftmost quantifier, move negation one step rightwards"

Caution

- English (and other natural languages) are not structured like standard first order logic
 - Don't try applying these rules to English
- Negation of "there is a horse that can add"
 - ... is not "all horses cannot add" (which is read as "not all horses can add")
 - ... though it could be "all horses lack the ability to add"
 or "no horse can add"