Logic and Quantifiers

CS 2800: Discrete Structures, Spring 2015

Sid Chaudhuri

Propositional Logic

- Primitive/atomic symbols/statements
- $P \equiv$ "It's sunny"
- $Q \equiv$ "I'm out running"
- $R \equiv$ "Mary had a little lamb"
- $S \equiv$ "Colorless green ideas sleep furiously"

Propositional Lofic

- Logical connectives
- and (\wedge)
- " P and Q ", or " $P \wedge Q$ " (it's sunny and l'm out running)
- or (v)
- " P or Q ", or " $P \vee Q$ " (it's sunny or I'm out running)
$-\operatorname{not}(\neg)$
- "not P " or " $\neg P$ " (it's not sunny)

When writing proofs, prefer plain English.
\Rightarrow or \Leftrightarrow can be used judiciously to denote a chain of reasoning.

- implies (\Rightarrow)
- "if P, then Q " or " $P \Rightarrow Q$ " (if it's sunny, then I'm out running)
- is implied by (\Leftarrow)
- " Q, if P " or " $Q \Leftarrow P$ " (I'm out running, if it's sunny)
- if and only if (\Leftrightarrow)
- " P if and only if Q " or " $Q \Leftrightarrow P$ " (I'm out running if and only if it's sunny)

Propositional Logic

- Inference rules
- Modus ponens: If P is true, and P implies Q, then Q must be true

- $P, P \Rightarrow Q \vDash Q$
- Premise 1: P

Premise 2: $P \Rightarrow Q$
Conclusion: Q

- Premise 1: It's sunny

Premise 2: If it's sunny, then I'm out running
Conclusion: I'm out running

Propositional Logic

- Inference rules
- Modus ponens: If P is true, and P implies Q, then Q must be true
- Cornerstone of direct proofs
- If the first statement in a chain of forward implications is true, modus ponens lets us conclude that the last statement must also be true
- Premise 1: $S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots \Rightarrow S_{n} \Rightarrow S$

Premise 2: S_{0}
Conclusion (after recursively applying modus ponens): S

- This is not the only possible inference rule
- e.g. Modus tollens: $P \Rightarrow Q, \neg Q \vDash \neg P$ (proof by contradiction)

First-Order Logic

- Just like propositional logic, but introduces
- Variables: x, y, z, \ldots
- Predicates: $P(x), Q(x), R(x), \ldots$
- Quantifiers: \forall ("for all"), \exists ("there exists")
- Every x has property $F(x): \forall x, F(x)$
- There is some x with property $F(x): \exists x, F(x)$
- "All men are mortal" : $\forall x, \operatorname{Man}(x) \Rightarrow \operatorname{Mortal}(x)$
- Painstakingly: "for every object, if it is a man, then it is mortal"
- "Somebody here is asleep" : $\exists x \in \operatorname{Humans}, \operatorname{Here}(x) \wedge \operatorname{Asleep}(x)$
- Painstakingly: "there exists a human being who is here and who is asleep"

Thought for the Day \#1

Is this statement true or false?
"All eleven-legged alligators have orange and blue spots"

This statement is true!!!
... else there would be an eleven-legged alligator (which lacks orange spots, or blue spots, or both)

Any statement about each member of an empty set is always true

Negating Quantified Statements

- All dogs have fleas
- There is a dog which has no fleas
- There is a horse that can add
- No horse can add
- Every koala can climb
- Some koala cannot climb

- Everybody in this class likes mathematics
- Somebody in this class does not like mathematics

Negating Quantified Statements

- There exists a pig that can swim and catch fish
- No pig can both swim and catch fish
- In every country, there is a city by a river
- In some country, there is no city by a river
- Old MacDonald had a farm, and on that farm he had a cow
- Old MacDonald either had no farm, or had a farm without cows

Negating Quantified Statements

- In every mathematics class there is some student who falls asleep during lectures
- There is a mathematics class in which no student falls asleep during lectures
- "There must be some way out of here" said the joker to the thief
- The joker did not say to the thief: "There must be some way out of here"
- To every thing there is a season
- To some thing, there is no season

Negating Quantified Statements

- It is not the case that every x has property $F(x)$ \Leftrightarrow there is some x without property $F(x)$

$$
\neg(\forall x, F(x)) \Leftrightarrow \exists x, \neg F(x)
$$

- It is not the case that there is some x with property $F(x) \Leftrightarrow$ every x lacks property $F(x)$

$$
\neg(\exists x, F(x)) \Leftrightarrow \forall x, \neg F(x)
$$

- "Flip leftmost quantifier, move negation one step rightwards"

Caution

- English (and other natural languages) are not structured like standard first order logic
- Don't try applying these rules to English
- Negation of "there is a horse that can add"
- ... is not "all horses cannot add" (which is read as "not all horses can add")
- ... though it could be "all horses lack the ability to add" or "no horse can add"

