1. Suppose we wish to transmit the message "cs2800 rocks" using RSA. Suppose the public key has $m=$ $p q=3403$ and the exponent $k=17$.
Note: for this problem, I used a spreadsheet to do the calculations. If you use calculators or spreadsheets to manipulate very large numbers, you can cause overflow, so make sure you reduce $\bmod m$ as necessary to keep the numbers small. To compute a^{k} for large k, it helps to write k in binary, and then use repeated squaring to find a to a power-of-two power. For example, to compute a^{52}, I write $52=32+16+4$, so $a^{52}=a^{32} \cdot a^{16} \cdot a^{4}$.
(a) Use the mapping

'a'	01
'b'	02
;	!
'y'	25
'z'	26
',	27
'0'	28
'1'	29
'2'	30
:	:
'9'	37

convert the message into a string of digits, and break the digits up into groups of threes.
(b) By separately encrypting each block of 3 digits, produce the RSA cyphertext. Add leading zeros to each encrypted block so that each block of cyphertext is 4 digits long.
(c) You have managed to intercept the private key: $p=41, q=83$. Use these factors to compute $\phi(m)$ and k^{-1}. Use the algorithm you derived in question 2 of homework 8 to compute $k^{-1} \bmod \phi(m)$.
(d) Using these values, decrypt the message "0948 333218502898200226920377 1398".

