Discrete Structures	Homework 9
CS2800 Spring 2015	RSA

1. Suppose we wish to transmit the message "cs2800 rocks" using RSA. Suppose the public key has m = pq = 3403 and the exponent k = 17.

Note: for this problem, I used a spreadsheet to do the calculations. If you use calculators or spreadsheets to manipulate very large numbers, you can cause overflow, so make sure you reduce mod m as necessary to keep the numbers small. To compute a^k for large k, it helps to write k in binary, and then use repeated squaring to find a to a power-of-two power. For example, to compute a^{52} , I write 52 = 32 + 16 + 4, so $a^{52} = a^{32} \cdot a^{16} \cdot a^4$.

(a) Use the mapping

· ?	01
a	01
'b'	02
:	÷
'y'	25
'z'	26
، ،	27
'0'	28
'1'	29
'2'	30
:	÷
' 9'	37

convert the message into a string of digits, and break the digits up into groups of threes.

- (b) By separately encrypting each block of 3 digits, produce the RSA cyphertext. Add leading zeros to each encrypted block so that each block of cyphertext is 4 digits long.
- (c) You have managed to intercept the private key: p = 41, q = 83. Use these factors to compute $\phi(m)$ and k^{-1} . Use the algorithm you derived in question 2 of homework 8 to compute $k^{-1} \mod \phi(m)$.
- (d) Using these values, decrypt the message "0948 3332 1850 2898 2002 2692 0377 1398".