1. Each of the following relations has domain $\{x, y, z\}$ and codomain $\{1,2,3\}$. For each, state whether it is a function or not. If it is a function, state (i) its image, (ii) whether it is surjective or not, (iii) whether it is injective or not. If it is not a function, state why not.
(a) $\{(x, 1),(y, 2),(x, 3),(z, 2)\}$
(b) $\{(x, 1),(y, 2)\}$
(c) $\{(x, 3),(y, 2),(z, 1)\}$
(d) $\{(x, 1),(y, 1),(z, 1)\}$
2. Determine whether each of these functions from \mathbb{Z} to \mathbb{Z} is injective (one-to-one) or not. If it is not injective, give a counterexample. Note that \mathbb{Z} is the set of all integers: negative, positive or zero.
(a) $f(n)=n-1$
(b) $f(n)=n^{2}+1$
(c) $f(n)=n^{3}$
(d) $f(n)=\lceil n / 2\rceil \quad(\lceil x\rceil$ denotes the smallest integer greater than or equal to $x)$
3. Recall that $[X \rightarrow Y]$ denotes the set of all functions with domain X and codomain Y.
(a) Give a bijection from $[X \rightarrow Y] \times[X \rightarrow Z]$ to $[X \rightarrow Y \times Z]$.
(b) Give a bijection from $[X \rightarrow[Y \rightarrow Z]]$ to $[X \times Y \rightarrow Z]$.
(c) Assuming there is a bijection between X and Y, give a bijection from $[X \rightarrow Z]$ to $[Y \rightarrow Z]$.
4. (a) A function $f: A \rightarrow A$ is called involutive if for all $x \in A, f(f(x))=x$. Prove or disprove:
i. if f is involutive, then it is injective.
ii. if f is involutive, then it is surjective.
(b) A function $f: A \rightarrow A$ is called idempotent if for all $x \in A, f(f(x))=f(x)$. Prove or disprove:
i. if f is idempotent, then it is injective.
ii. if f is idempotent, then it is surjective.
(c) If $f: B \rightarrow C$ and $g: A \rightarrow B$ are functions, then $f \circ g$ is the function from A to C defined by: $(f \circ g): x \mapsto f(g(x))$. Prove or disprove: if f and $f \circ g$ are one-to-one, then g is one-to-one.
5. In the first few homeworks, we asserted various facts about sets. We will now prove two of them. Given two sets $A \subseteq S$ and $B \subseteq S$, show that
(a) $A \cup B=(A \backslash B) \cup(A \cap B) \cup(B \backslash A)$.
(b) $(A \backslash B) \cap(A \cap B)=\emptyset$.

Note that the formal definition of equality for sets is that $A=B$ if $A \subseteq B$ and $B \subseteq A$, and the formal definition of subset is $A \subseteq B$ if for all $x \in A, x \in B$. Definitions for \cup, \cap, \backslash and \emptyset are on the lecture slides.

