
Discrete Structures Homework 10
CS2800 Spring 2015 RSA, Graphs

1. Suppose that Bob accidentally computes k−1 mod pq instead of k−1 mod φ(pq) in his implementation
of RSA. Show that if he decrypts the message a, he will receive the message a · (at)p+q−1 for some t.

2. In lecture, we noted that there are several ways to characterize trees (defined as undirected connected
graphs with no cycles). For instance, if the undirected graph G = (V,E) is finite (finite numbers of
vertices and edges), then any two of the following three properties implies the third.

Connected: G is connected.

Acyclic: G has no cycles.

Sparse: The number of edges is one less than the number of vertices. In brief, |E| = |V | − 1.

We gave short sketches of the proofs. In this homework, we will practice developing and writing out these
proofs in detail. Below, we provide an outline of each of the proofs. Write them out properly, emphasizing
clarity, precision, readability and completeness. Ensure that every line in your proof is implied by the
preceding lines (this helps avoid backwards proofs).

(a) Connected and Acyclic (that is, the graph is a tree) imply Sparse

First, prove the following subresult:

Lemma 1: If a tree has at least two vertices, then it must have a vertex of degree 1 (i.e.
with only one incident edge).

Proceed by contradiction. Assume no vertices have degree 1. Can the tree have a vertex of
degree zero? If not, why not? And if all vertices have degree at least 2, and you start walking
from vertex to vertex using different edges to enter and exit each vertex, what happens?

Having proved the lemma, proceed by induction on the number of vertices of the graph. The
statement to prove is

S(n) = “A tree on n vertices has n− 1 edges”

What is the base case? What is the inductive hypothesis? How can you use the lemma we proved
above to prove the inductive step? How should you conclude your inductive proof?

(b) Connected and Sparse imply Acyclic

We will first define a spanning tree. A spanning tree on graph G = (V,E) is a subgraph of G that
is a tree and covers every vertex. In other words, it is a tree (V,E′) with E′ ⊆ E. Note that the
spanning tree must cover every vertex, and cannot have edges other than the original ones. A graph
need not have a spanning tree, and there may be more than one spanning tree for a graph. Start by
proving the following lemma:

Lemma 2: Every connected graph has a spanning tree.

Proceed by induction on the number of edges. First, write down the statement S(n) to be
proved. For the base case, if the graph is connected and has zero edges, what can you say
about it? Next, write down the inductive hypothesis (remember this is induction on the
number of edges). For the inductive step, consider two different cases: (i) the graph is a
tree, (ii) the graph is not a tree (and hence contains a cycle). The first case should be easy
to handle. If the graph does contain a cycle, how can you simplify it so you can apply the
inductive hypothesis?

Now we will wrap up the proof. We are given that G is connected and sparse. Does G have a
spanning tree? If so, how can you count the number of edges of the spanning tree? (Hint: use
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Q2(a)). Compare this count with the fact that G is sparse to conclude the result (be careful here,
the argument is not difficult but you need to write it out precisely!)

(c) Acyclic and Sparse imply Connected

You should be well warmed up from fleshing out the proofs above, so we’ll keep the outline brief
here. Proceed by contradiction, assuming G is not, in fact, connected. First, prove the following
lemma:

Lemma 3: If a graph is not connected, then it can be split into at least two disjoint
subgraphs, each of which is connected. (We’ll call each such subgraph a “connected com-
ponent”.)

Keeping in mind G has no cycles, what can you say about each of these connected components? Use
a result you proved earlier to find the number of edges of the graph as a function of the number of
vertices, by summing over the connected components. Show that this value is inconsistent with the
relation |E| = |V | − 1, leading to a contradiction.


