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Finite Automata

1. Draw the state graphs for the finite automata which accept sets of strings
composed of zeros and ones which:

a) Are a multiple of three in length.
b) End with the string 00.
c) Possess runs of even numbers of 0's and odd numbers of 1's.

2. Describe the sets accepted by the finite automata pictured below.
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3. Design a finite automaton that will control an elevator that serves three
floors.  Describe the states of the machine, intuitively present its operating
strategy, and provide a state graph for your automaton.

4. Define formally and provide state tables for the finite automata that accept
strings of zeros and ones which:

a) Never contain three adjacent ones.
b) Have a one as the next to last symbol.
c) Contain an even number of zeros or an odd number of ones - not both!
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5. String searching and pattern matching can be done easily by finite
automata.  Design a machine that accepts only strings containing 101 as a
substring.  Now do the same (design a machine) for the substring 00101.

6. Develop an algorithm to design finite automata for substring searching.
The input should be the substring and the output is a finite automaton state
table.  Be sure to specify your data structures and intuitively describe the
algorithm.

Closure Properties

1. Suppose that the finite automata Mi and Mk accept strings over the alphabet
{0,1}.  Design an automaton which accepts strings of the form x#y where x is
accepted by Mi and y is accepted by Mk.

2. Prove that the class of sets accepted by finite automata is closed under
intersection.  In other words, given Mi and Mk construct the finite automaton
Mm such that:

T(Mm) = T(Mi) ∩ T(Mk)

3. Let xR denote the reversal of the string x.  (For example, if x = 010011 then
xR = 110010 and so forth.)  Prove that the sets accepted by finite automata
are closed under string reversal by constructing for any finite automaton, a
new machine that accepts the reversals of the strings accepted by the
original automaton.

4. Show that for each finite automaton, there is another machine that accepts
only strings that are the front two thirds of the strings the first automaton
accepted.

5. The minus operator on sets is usually defined as:

A - B  =  { x | x ∈ A  and  x ∉ B}.

Prove that the class of sets accepted by finite automata is closed under
minus.
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6. Let x be a particular string.  For arbitrary strings y and z such that z = yx,
the quotient operator (/) can be defined:

z/x = yx/x = y.

(For example:  11010/10 = 110 and 11101/01 = 111.)  This operator can be
applied to sets as follows:

A/x = { y | yx U A}.

(That is:  0*110*/10 = 0*1 and 0*11(01)*/11 = 0*.)  Show that the class of
sets accepted by finite automata is closed under quotient by constructing
for any x and Mi, a machine Mk for which:

T(Mk) = T(Mi)/x.

7. Set quotient may be defined as:

A/B = { x | xy ∈ A for some y ∈ B}.

Show that the class of sets accepted by finite automata is closed under set
quotient.  That is, for Mi and Mk, design an Mm in such a way that:

T(Mm) = T(Mi)/T(Mk).

8. An epsilon move takes place when a finite automaton reads and changes
state but does not move its tape head.  (This is like a stay move for Turing
machines.)  Does this new operation add power to finite automata?  Justify
your answer.

Regular Sets and Expressions

1. What are the regular expressions for sets of strings composed of zeros and
ones which:

a) Are a multiple of three in length.
b) End with the string 00.
c) Possess runs (substrings) containing only even numbers of zeros and odd

numbers of ones.

2. Derive the regular expressions for the sets accepted by the finite automata
whose state graphs are pictured in the second problem of the first section.
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3. Design finite automata that will accept the sets represented by the following
regular expressions.

a) 11(10 + 01)*1*01
b) (0 + 11 + 01)*0*(01)*

c) (0 + 1)*0*101

4. Show that the set of all binary integers that are the sum of exactly four (no
more, no less!) positive squares is a regular set.  (HINT:  They are all found
by substituting for m and n in the formula 4n(8m + 7).)

5. Review the encodings of Turing machines from chapter one.  Are these
encodings a regular set?  Discuss this in terms of nondeterministic Turing
machines.

6. Derive and present the rules for determining LAST sets for regular
expressions.  Argue that they are correct.

7. Develop an algorithm for determining FOLLOW sets for any symbol in a
regular expression.  (You may assume that procedures for computing FIRST
and LAST sets are available.)

Decision Problems for Finite Automata

1. Can finite automata accept sets of strings of the form:

a) 0n1*[(0 + 11)*(1 + 00)* ]*0*1n

b)  ww where w is a string of zeros and ones
c)  ww where w is a string of zeros

2. Can the following sets of strings be accepted by finite automata?  Justify
your answers!

a)  { 1n | n is a prime number }
b)  { 02n12m | n and m are integers }
c)  { x | x is a binary power of two }
d)  { x | the center symbol of x is a 1 }

3. Show that the regular sets are not closed under infinite union by producing
an infinite family of regular sets whose union is not regular.
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4. Consider a programming language in which only the following instructions
occur.

x  = 0
x  = y
x  = y + 1
repeat  x
en d

The symbols x and y stand for strings from a specified alphabet.  A correct
program is one which contains only the above instructions and in which an
end eventually follows each repeat.  Nesting is said to occur whenever two
or more repeat instructions are encountered before reaching an end. The
depth of nesting for a program is the number of consecutive repeat
instructions.

Can the following sets of correct programs be accepted by finite automata?

a)  Programs with depth of nesting no greater than two.
b)  All correct programs.

5. Prove that every infinite regular set has an infinite regular subset.

6. Are all subsets of a regular set regular?  Why?

7. Two states of a finite automaton are said not to be equivalent if there is a
string which takes one into an accepting state and the other into a rejecting
state.  How many strings must be checked in order to determine whether
two states are equivalent?  Develop an algorithm for this.

8. Design an algorithm to determine whether a finite automaton accepts an
infinite set.  Prove that your algorithm is correct.

9. Exhibit an algorithm that detects whether one finite automaton accepts a
subset of the set accepted by another machine.  Show that this procedure
works.

10. Examine the emptiness problem algorithm for finite automata.  How much
time does it require to analyze an automaton that has n states and uses m
symbols?


