Lectures 9 and 10

Random variables such as role of a dice.
Probability distributions
Problem if uniform distribution for a countably infinite set
$a+a+a^{2}+\ldots+a^{n}=\frac{1-a^{n}}{1-a}$
Joint probability $\operatorname{Prob}(A, B)$
Conditional probability $\operatorname{Prob}(A \mid B)$.
$\operatorname{Prob}(A \mid B)=\frac{\operatorname{Prob}(A \cap B)}{\operatorname{Prob}(B)}$
Independence
If events A and B are independent

$$
\operatorname{Prob}(A \cap B)=\operatorname{Prob}(A) \operatorname{Prob}(B)
$$

Bayes rule

$$
\operatorname{Prob}(B \mid A)=\frac{\operatorname{Prob}(A \mid B) \operatorname{Prob}(B)}{\operatorname{Prob}(A)}
$$

Expectation of a random variable $\sum_{x} x p(x)$
Linearity of expectation $E(x+y)=E(x)+E(y)$
Variance $\sigma(x)=E(x-E(x))^{2}$
$\sigma(x)=E\left(x^{2}\right)-E(x)^{2}$
$\operatorname{Var}(x+y)=\operatorname{Var}(x)+\operatorname{Var}(y)+2 E(x y)$
If x and y are independent $E(x y)=E(x) E(y)$ and $\sigma^{2}(x+y)=\sigma^{2}(x)+\sigma^{2}(y)$
Standard deviation is square root of variance.

