Lecture 5

Sets not countably infinite
functions mapping $\{1,2,3, \ldots\} \rightarrow\{0,1\}$
The class of all sets of integers

The diagonal function.
If $f_{1}, f_{2}, f_{3}, \ldots$ is a list of functions, then $f_{D}(i)=f_{i}(i)+1 \bmod 2$ is not on the list.

Can diagonalize over a list of computer programs and hence over all computable partial functions.

$$
f_{D}(i)= \begin{cases}p_{i}(i)+1 & \text { if } p_{i}(i) \text { halts } \\ 0 & \text { otherwise }\end{cases}
$$

is a non computable function.
Halting problem is not computable. Otherwise $f_{D}(i)$ would be computable.
There exists a theorem that is true but not provable. Otherwise we could solve the halting problem.

