
CS 2112 Fall 2020
Assignment 5

Interpretation and Simulation
Due: Thursday, November 19, 11:59PM

Draft Design Overview due: Tuesday, November 10, 11:59PM

This assignment requires you to implement

• an interpreter for the critter language introduced in the last assignment,
• a simulator that maintains a state of the execution environment and emulates the

execution of programs, and
• a console interface for controlling the simulation and querying the state of execu-

tion.

In addition to implementing new functionality, you are expected to make sure that
the functionality implemented for Assignment 4 works correctly. This may require fixing
bugs in your code. However, the majority of the grades in this assignment will be on the
new functionality.

1 Changes

• No changes so far.

2 Instructions

2.1 Grading

Solutions will be graded on design, correctness, and style. A good design makes the
implementation easy to understand, is modular, and takes advantage of inheritance to
maximize code sharing. A correct program compiles without errors or warnings and be-
haves according the requirements given here. A program with good style is clear, concise,
and easy to read.

A few suggestions regarding good style may be helpful. You should use brief but
mnemonic variable names and proper indentation. Public methods should be accompa-
nied by Javadoc-compliant specifications. Class invariants should be documented. Other
comments should be included to explain nonobvious implementation details.

2.2 Final project

This assignment is the second installment of the final project for the course. Read the
Project Specification to find out more about the final project and the language you will be
working with in this assignment.

CS 2112 Fall 2020 1/8 Assignment 5

http://www.cs.cornell.edu/courses/cs2112/2020fa/hw/a4/a4.pdf
http://www.cs.cornell.edu/courses/cs2112/2020fa/project/project.pdf

2.3 Partners

You will work in a group of two or three students for this assignment. This should be the
same group as in the last assignment.

Remember that the course staff is happy to help with any problems you run into. Read
all Piazza posts and ask questions that have not been addressed, attend office hours, or
set up meetings with any course staff member for help.

2.4 Restrictions

Use of any standard Java libraries from the Java SDK is permitted. However, the use of a
parser generator (e.g., CUP) is prohibited.

The release code contains all the new classes you should add to your existing code.
You should follow the instructions in their Javadoc, so that our testing software can test
your code.

2.5 Release

The release files are available on CMS. You should download them and incorporate them
into your critterworld project. The folders correspond to packages in your project.

3 Design overview document

We require that you submit an early draft of your design overview document in advance
before the assignment due date. The Overview Document Specification outlines our ex-
pectations. Your design and testing strategy might not be complete at that point, but we
would like to see your progress. Feedback on this draft will be given promptly after the
overview is due.

4 Version control

As in the last assignment, you must submit file log.txt that lists your commit history
from your group.

Additionally, you must submit a file a5.diff showing differences for changes you
have made to files you submitted in Assignment 4. Version control systems already pro-
vide this functionality.

5 Interpretation

The core of this assignment is implementing an interpreter for critter programs. An in-
terpreter is a program that emulates the execution of programs written in some program-

CS 2112 Fall 2020 2/8 Assignment 5

http://www.cs.cornell.edu/courses/cs2112/2020fa/handouts/Documentation.html

ming language. For example, the Java run-time system includes a bytecode interpreter
that executes “bytecode” from Java class files.

Your interpreter will work directly on the AST generated by the parser from Assign-
ment 4. It will interpret the rules by recursively evaluating the AST nodes representing
conditions and expressions in the context of the current state of the critter and the state
of the world. The current state of the critter and the state of the world are known as the
execution environment. The interpreter executes rules until an action is taken. It also
updates the critter’s memory as described by the rules applied.

5.1 Loading new critters

To add a new critter to the world, the critter’s initial state and program are read from a
critter file. The critter files may contain blank lines and lines beginning with //, indicating
comments. These lines should be ignored. Lines may be terminated either with just a
newline character (’\n’) or a Windows-style "\r\n" sequence, and trailing whitespace is
allowed on any line. Otherwise, the format of a critter file is as follows:

species: <name>
memsize: <memory size>
defense: <defensive ability>
offense: <offensive ability>
size: <size>
energy: <energy>
posture: <posture>
<program>

The species name <name> is a string. It is recorded for identification purposes, but is
not otherwise used for this assignment and has no effect on the critter simulation. The
next six values specified in angle brackets are nonnegative integers. The first represents
the number of memory locations of the critter and the rest represent initial values for some
of the memory locations. Following these values are the critter rules. These are given
in the syntax described in the Project Specification. The critter rules should be parsed
with your parser from Assignment 4. An example of a critter file is given in the example
directory. A valid critter file must have these elements occurring in this order. Except for
syntax errors generated while parsing the critter rules, any anomalies discovered when
reading a critter file should result in a warning message to the user and a default value
supplied if appropriate, but execution should proceed. In addition to specifying a critter
file to load, the user should be able to specify the number of such critters to be added to
the world. These critters are placed at randomly chosen legal positions in the world: that
is, not on top of a rock, food, or another critter.

5.2 Interpreting critter rules

You will need to implement the recursive algorithm described in the Project Specification
to decide which action to take using the evaluated AST. You will also need to use your

CS 2112 Fall 2020 3/8 Assignment 5

http://www.cs.cornell.edu/courses/cs2112/2020fa/project/project.pdf
http://www.cs.cornell.edu/courses/cs2112/2020fa/project/project.pdf

AST mutation code from the last assignment to implement mating and budding.
For the purpose of this assignment, you do not have to implement the smell sensor

according to the project specification. Instead, smell should always return 0.

6 Simulation

A simulator keeps track of the state of the world and all the critters and other artifacts in
it. Your simulator will load the initial state of the world from a file.

6.1 Loading world definitions

The initial state of the world is given in a world file, which may contain blank lines and
lines beginning with //, indicating comments. These lines should be ignored. The first
two lines of the world file have the following format:

name <world name>
size <width> <height>

The <world name> parameter is a string specifying the name of the world, which should
be printed out when the world is loaded. The <width> and <height> parameters specify
the width and height of the world. Each subsequent line must have one of the following
three forms, which specify where to place a rock, food or a critter:

• rock <column> <row>

• food <column> <row> <amount>

• critter <critter file> <column> <row> <direction>

You are not required to check for objects being placed on the same hex or on hexes
outside of the world, although you are encouraged to do so. All critter files must be
in the same directory as the world file. This means that if the world file is located at
/home/bob/world.txt, and that file contains the line critter alice.txt 0 0 0, then the
critter file is located at /home/bob/alice.txt. Two methods that may be useful for find-
ing critter files are java.io.File.getAbsoluteFile() and java.io.File.getParent(). An
example world file is given in world.txt. As with critter files, any anomalies discovered
when reading a world file should result in a warning message to the user and a default
value supplied if appropriate, but execution should proceed.

6.2 Simulating the world

You will need to implement a model that keeps track of the state of the world: its dimen-
sions and contents, critters and their states, etc., as described in the Project Specification.
The world will be able to advance time steps, update the state of the world, and allow
each critter to execute its rule set in each time step.

CS 2112 Fall 2020 4/8 Assignment 5

http://www.cs.cornell.edu/courses/cs2112/2020fa/project/project.pdf

F - -
- - -

- - - #
- - -

- 1 - -
- - -

- - -
- - -

- 5 - -
(a) An ASCII-art map of the world

(0,4) (2,5) (4,6) (6,7)
(1,4) (3,5) (5,6)

(0,3) (2,4) (4,5) (6,6)
(1,3) (3,4) (5,5)

(0,2) (2,3) (4,4) (6,5)
(1,2) (3,3) (5,4)

(0,1) (2,2) (4,3) (6,4)
(1,1) (3,2) (5,3)

(0,0) (2,1) (4,2) (6,3)

(b) Coordinates in an ASCII-art map

Figure 1: The structure of ASCII-art maps

7 User interface

The console.Console class is provided to you. If you implement the Controller right, the
command line interface should just work. It should support the following commands:

• new
Start a new simulation with a world populated by randomly placed rocks.

• load <world file>
Start a new simulation with the world specified in file <world file>. Your world ini-
tializer should read critter files associated with any critters specified in <world file>.

• critters <critter file> <n>
Read the critter file <critter file> and randomly place n such critters into the world.

• step <n>
Advance the world for n time steps.

• info
Print the number of time steps elapsed, the number of critters alive in the world, and
an “ASCII art” map of the world. The hex contents displayed in the map should follow
these notations:

– - for an empty space
– # for a rock
– d for a critter facing in direction d
– F for food.

Figure 1(a) shows an example ASCII-art map for a world with 7 columns and height
of 9. The columns of this map corresponds to the columns of the world, and adjacent
columns are staggered by one line. Figure 1(b) shows the (column,row) coordinates
corresponding to various positions on the example ASCII-art map.

• hex <column> <row>
Print a description of the contents of the hex at coordinate (column,row). If a critter is
present, print the following as a description of the critter:

– its species

CS 2112 Fall 2020 5/8 Assignment 5

– the contents of at least its first eight memory locations
– its rule set, using the pretty-printer from Assignment 4
– the last rule executed

If food is present, print the amount of food.

8 Written problems

1. Write a critter program for a critter that walks in a growing hexagon spiral that, on an
infinite world without any rocks, would eventually hit every hex. When it comes to
food, it should eat the food. (Hint: the critter will need additional memory slots.)

2. Write a critter program for a critter that sits in one place until food appears within
one hex of it. It then eats the food and moves to where the food was. While sitting,
whenever it gets within 100 of its maximum energy, it tries to bud a child.

9 Overview of tasks

Determine with your partner how to break up the work involved in this assignment. Here
is a list of the major tasks involved:

• Implement the interpreter for critter programs.
• Implement the state of the world and its critters.
• Implement the console interface and its communication with the world model.
• Develop a good test suite to ensure that the interpreter is implemented correctly.
• Solve the written problems.

10 Tips and tricks

Modular design Think carefully about how to divide this programming assignment up
into modules that separate concerns effectively. For example, can you keep the interpreter
code largely separate from the rules of the world simulation? Can you express the rules of
the world simulation simply and in a localized way that makes it clear they are correct? In
Assignment 6, the console interface will be replaced by a graphical user interface (GUI),
which will display information similar to the current command-line interface. Conse-
quently, if your world model is properly decoupled from the user interface, you should
be able to substitute the GUI for the command-line interface without changing the world
simulation. This is the essence of the Model-View-Controller design pattern.

Testing Your testing strategy will be important for this assignment, and we expect you
to put time into planning how you will test and to document your testing plan in your
design document.

CS 2112 Fall 2020 6/8 Assignment 5

Testing the world simulation is difficult without a graphical representation. The main
focus of this assignment is therefore on correctly interpreting critter programs, rather than
on perfecting the world simulation. Our grading scheme will reflect this priority. We rec-
ommend that you work with small worlds and focus on testing each language construct
in isolation and on testing individual critter actions. Make sure your info command
prints out accurate ASCII-art representations of the world so you (and we) can tell that
your code is correct.

It may be difficult to debug your implementation using only the output of the program
as defined in the specification. We recommend adding additional diagnostic functionality
so that you can see, for example, why each rule is chosen or not chosen during the evalua-
tion. We also recommend developing unit tests for each language construct. For example,
you want to be sure that all the sensors produce the right values and all the actions do
what they are supposed to. Testing correctness fully might be challenging to achieve by
only running the simulation, so think about what other test harnesses would be helpful.
Time spent making viewing and testing as easy as possible will be well worth it. If you
put all your tests in src/test/java, Gradle will run them for you every time you run the
Gradle build task and print a report, which you can find in the Gradle build folder. You
should be sure to test:

• loading a full critter file
• generating a new world
• loading a full world file
• stepping a single critter
• stepping multiple critters
• printing the ASCII-art world
• that the Spiral Critter travels in a spiral path.

This list is by no means exhaustive, but rather offers a few key milestones. Your full
suite of tests should be more thorough.

11 Submission

You should submit these items on CMS:

• overview.txt/pdf: Your final design overview document for the assignment. It should
also include descriptions of any extensions you implemented.

• A zip file containing these items:

– Source code: You should include all source code required to compile and run the
project. Source code should reside in the src/main/java directory with an appropri-
ate package structure.

– Tests: You should include code for all your test cases. These should be in in src/test/java,
separate from the rest of your source code. Subpackages are permitted.

– External libraries: If you imported any external libraries via Gradle, include your

CS 2112 Fall 2020 7/8 Assignment 5

build.gradle file.

Do not include any .class files.
• log.txt: A dump of your commit log from your version control system.
• a5.diff: A text file showing diff of changes to files that were submitted in the last

assignment, obtained from the version control system.
• spiral.txt: This file should be a plain text file containing your solution to written

problem 8.1 (spiral critter program) and nothing else. It should be possible to load and
parse the file with the ParseAndMutateApp program from A4.

• eat-and-bud.txt: This file should be a plain text file containing your solution to written
problem 8.2 and nothing else. It should be possible to load and parse the file with the
ParseAndMutateApp program from A4.

CS 2112 Fall 2020 8/8 Assignment 5

	Changes
	Instructions
	Grading
	Final project
	Partners
	Restrictions
	Release

	Design overview document
	Version control
	Interpretation
	Loading new critters
	Interpreting critter rules

	Simulation
	Loading world definitions
	Simulating the world

	User interface
	Written problems
	Overview of tasks
	Tips and tricks
	Submission

