
CS 2112 Fall 2020
Assignment 3

Data Structures and Text Editing
Due: Monday, October 12, 11:59PM

Design Document due: Sunday, October 4, 11:59PM

Text editors must store large dictionaries of words and quickly access them when per-
forming common tasks such as word completion, spell checking, and text search. In this
assignment you will implement core data structures and algorithms for a simplified text
editor. The first part introduces a generic hash table, a prefix tree, and a Bloom filter. The
second part requires you to create plugins for a text editor that performs word comple-
tion and spell checking. The last part contains written problems focusing on the concepts
introduced in class.

This assignment will take some time. Get started early!

1 Instructions

1.1 Grading

Solutions will be graded on both correctness and style. A correct program compiles with-
out errors or warnings and behaves according the requirements given here. A program
with good style is clear, concise, and easy to read.

A few suggestions regarding good style may be helpful. You should use brief but
mnemonic variables names and proper indentation. Your code should include comments
as necessary to explain how it works, but without explaining things that are obvious.

1.2 Partners

You will work with one partner for this assignment. You must create groups on CMS by
Thursday, October 1 at 11:59 PM if you are picking a partner, otherwise we will randomly
assign you a partner. We will assign repos on the Cornell CIS Github instance for A3. Post
privately on Piazza with your netIDs when your group are ready to have your repo set
up.

Remember that the course staff is happy to help with problems you run into. Use
Piazza for questions, attend office hours, or set up meetings with any course staff member
for help.

1.3 Documentation

For this assignment, we are especially looking for good documentation of the interfaces
implemented by your data structures. Write Javadoc-compliant comments that crisply
explain what all the methods do at a level of abstraction that enables a client to use your
data structure effectively, while leaving out unnecessary details.

CS 2112 Fall 2020 1/10 Assignment 3

1.4 Restrictions

Your use of java.util will be restricted for this assignment. Classes from java.util,
except for Scanner, may not be used anywhere in your code except in a JUnit test suite
(see §7). Interfaces from java.util may be used anywhere in your code to guide your
internal data structures.

While we require that you respect any interfaces we release, you are allowed (and even
expected) to create your own classes and interfaces to solve portions of the assignment.

1.5 Importing and Running

Starting with this assignment, we will be using a system called Gradle in the release code.
Gradle automatically adds any dependencies into your project without the need to add
them manually. However, the steps to get your project into Eclipse are slightly different.
You will need the Gradle extension, which can be found in Eclipse Marketplace. (This
can be found in the drop-down help menu). Here, you can search for Gradle, and install
the extension. After this, go to File → Import and then under the Gradle folder, select
“Existing Gradle Project”. Walk through the start menu, and then select the release folder.

Now go to the Run drop-down menu, and select Run Configurations. Under Gradle Tasks,
select A3release -run. Then click Run. You should now be able to run the project as nor-
mal.

You may also run gradle from the command line. This can simply be run using the
gradlew files that are in the release.

1.6 Tips

In this assignment, you will be modifying an application with a graphical user inter-
face (GUI). The application has significant library dependencies because it builds on the
JavaFX GUI library. To make sure you don’t run into headaches right before the deadline,
start early to make sure that you have the right setup to successfully modify, compile, and
run the application.

2 Hash tables

Your task in this section is to implement a hash table with chaining, as discussed in class.
The lecture notes on hash tables have some helpful pointers, but we will also provide a
high level overview here.

A hash table is a data structure which maintains key value pairs. Each key is hashed
to an index using a hash function. Elements have a high probability of being hashed to
unique indices, but in the case of a collision, elements can either be stored in the same
index through use of a linked list (chaining) or just stored in the next available index
(probing).

CS 2112 Fall 2020 2/10 Assignment 3

The benefits of a hash table are that common data structure operations have a signif-
icantly better runtime. For example, lookup in an array is O(n) but for a hash table, it is
O(1). You will learn more about this in lecture, but getting a head start and understanding
it on a high level can help with this assignment.

2.1 Collisions

You should use chaining to handle collisions. You are expected to keep track of the load
factor and to resize your table whenever the load factor crosses a threshold. A smart
choice of load factor will keep memory usage reasonable while avoiding collisions.

2.2 Implementation

Implement the provided class HashTable<K,V>. Your hash table should implement Java’s
java.util.Map<K,V> interface, which is generic. The methods containsKey, get, put, and
remove should have expected O(1) (constant) running time. Your hash table should take
up O(n) (linear) space, where n is the number of entries in the hash table.

The implementation of the method keySet() should return an instance of an imple-
mentation of java.util.Set<K> that supports the following methods: size(), isEmpty(),
toArray(), and contains(Object). The remaining methods, including toArray(T[]), can
throw an UnsupportedOperationException.

The method hashCode(), which is defined for every Java object, can be used by a hash
function that you create to compute the bucket in which to place each object. However,
since hashCode() is not required to produce results that behave as if they are random,
you don’t want to use hashCode() directly to compute the bucket index. For example,
the default implementation of hashCode() returns the object’s memory address, therefore
only produces numbers that are multiples of 4. Another hash function is needed to pro-
vide diffusion throughout the buckets. The class java.security.MessageDigest provides
high-quality hash functions that can be used for this purpose, although they are more
expensive than necessary for most applications. The course notes have tips on how to
design a hashCode() method; see also this Wikipedia page.

3 Prefix trees

A prefix tree, also known as a trie,1 is a data structure tailored for storing and retrieving
strings. The root node represents the empty string.2 Each possible next character branches
to a different child node. Strings stored in the trie must be inserted explicitly by the user;
prefixes of such strings, although they occur along paths in the trie, are not considered to
be stored in the trie unless they have been explicitly inserted.

1Pronounced like “try”.
2Note that the empty string is "", the string of length 0, not null.

CS 2112 Fall 2020 3/10 Assignment 3

https://docs.oracle.com/javase/10/docs/api/java/util/Map.html
https://docs.oracle.com/javase/10/docs/api/java/util/Map.html#containsKey(java.lang.Object)
https://docs.oracle.com/javase/10/docs/api/java/util/Map.html#get(java.lang.Object)
https://docs.oracle.com/javase/10/docs/api/java/util/Map.html#put(java.lang.Object,java.lang.Object)
https://docs.oracle.com/javase/10/docs/api/java/util/Map.html#remove(java.lang.Object)
https://en.wikipedia.org/wiki/Cryptographic_hash_function

C

O

COW

W
CS

S

2

1

1

CS2110

0

CS2112

2

Figure 1: A trie containing the strings COW, CS, CS2110, and CS2112.

For example, the trie of Fig. 1 contains the four strings ‘‘COW’’, CS, CS2110, and CS2112.
The strings C, CS211, CO, and the empty string, although they appear as prefixes of strings
stored in the trie, are not considered to be stored in the trie themselves.

If a string is stored in the trie, there is a unique node corresponding to that string and
a unique path from the root down to that node obtained by tracing the characters in the
string. That node can contain a boolean flag to indicate that that string has been stored in
the trie. There is no need to store the string itself at that node; the string can be recovered
by tracing the path from the root down to that node, keeping track of the characters along
the way.

3.1 Implementation

Implement the provided Trie class. The operations insert, delete, and contains should
have O(k) running time, where k is the length of the string. In other words, the running
time of these operations should be proportional to the length of the given string. Your trie
should also implement the method closestWordToPrefix(), which returns the shortest
entry in the trie having the given prefix. This shortest string can be found using breadth-
first search.

The method closestWordToPrefix() should be case-sensitive. For example, it should
report CS2110 or CS2112 if the argument is CS211, but not if the argument is cs211.

CS 2112 Fall 2020 4/10 Assignment 3

4 Bloom filters

A Bloom filter is a probabilistic constant-space data structure for maintaining a set of
elements and testing whether a given element is in the set. It is probabilistic in the sense
that false positives may occur with small probability (that is, an element may be reported
to be in the set when it is not), but false negatives never occur (that is, if an element is
reported not to be in the set, then it is definitely not in the set).

An empty Bloom filter is a bit array of 0s. To insert an element into a Bloom filter, put
the element through k different hash functions. Use the results of these hash functions as
indices into the bit array. Set those k bits in the bit array to 1.

To determine if an element is in the Bloom filter, check all of its hash indices. If all of
them are 1 in the bit array, report that the element is in the set. If at least one of them is 0,
report that the element is not in the set.

If the objects contained in the Bloom filter are strings, the k different hash functions
can be simulated with a single hash function by appending a different single character
(e.g., a, b, c, . . .) to the end of the string before hashing.

4.1 Example of a false positive

Consider a Bloom filter for strings represented by a bit array of length 2, initially empty.
Suppose only one hash function is used to index strings. First, the string CS2112, whose
(hypothetical) hash value is 0, was inserted into the Bloom filter, setting the 0th bit to 1 in
the bit array. Now, to check whether CS2110, whose hypothetical hash value is also 0, is
in the Bloom filter, we check if the bit at position 0 is 1. Since this is the case, we conclude
that the Bloom filter does contain the String CS2110 when in fact it does not.

A larger bit array, more hash functions, and better quality hash functions all reduce
the likelihood of false positives.

4.2 Implementation

Implement the provided BloomFilter class.

5 Text editor

The text editor supports text search, spell checking, and autocompletion. These features
are specified by the interfaces SearchModule, SpellCheckModule, and AutoCompleteModule.
You are to provide implementations. The factory class ModuleFactory contains factory
methods that should access your implementations. Instances returned from the factory
methods are used by the main text editor program.

Search, spell checking, and autocompletion should all convert dictionary words to
lowercase before searching. The editor already converts all input to lowercase letters.

CS 2112 Fall 2020 5/10 Assignment 3

5.1 Architecture

The text editor project is broken up into three packages. The editor package includes
all of the view and model code for the editor. The modules package contains all of the
plugins providing functionality for text search, spell checking, and autocompletion. The
util package contains all of the data structures you will implement. These data structures
store and manipulate data for the plugins. While all the code you are required to write
resides in the modules and util packages, you are welcome to look inside the editor
package to get a taste of graphical user interface (GUI) code.

5.2 Dictionary file

After the text editor is started, spell checking and autocompletion are unavailable until a
dictionary file is loaded. Any newline-separated list of words will work as a dictionary
file. WinEdt provides such a file. On Macintosh and most Linux distributions, a good
dictionary file can be found at /usr/share/dict/words. To load a dictionary file, click the
top left button of the text editor.

5.3 User interaction

If your modules work correctly, word-completion suggestions from the autocomplete
module should be displayed in the lower-left corner of the editor window. Misspelled
words should be highlighted if you click the “check” button in the top left. To reset
spell checking, click the adjacent “X” button. Additionally, the time spent spell check-
ing should be reported in the lower-right corner after each run of spell checking. If you
enter a string in the search window at the bottom and click the search button, the first
occurrence of this string should be highlighted.

6 Performance

Performance analysis is a component of the grade for this assignment. You should choose
data structure(s) wisely to be efficient in both memory usage and runtime. Justify your
design in README.txt. We are looking for quantified comparisons of performance when
you use different data structures to back the text editor modules. This week in lab, we
covered VisualVM, which can give a lot of insight about where time is being spent in your
code.

Both correctness and performance are important when we evaluate how well the edi-
tor plugins work.

In addition to justifying your choice of data structures, you should perform the fol-
lowing specific performance tests:

• Verify that the put and get methods of your hash table are O(1) by reporting the run-
ning time for each as the number of elements in the hash table increases.

CS 2112 Fall 2020 6/10 Assignment 3

http://mirror.ctan.org/systems/win32/winedt/dict/us.zip
https://visualvm.github.io/

• Verify that your hash function produces reasonable diffusion by reporting the number
of empty buckets and the number of collisions for various sizes of the hash table.

System.nanoTime() can be very useful for finding running times directly.
As you saw in lab, VisualVM can be very useful for determining relative runtime of

specific functions in your code. Add screenshots of your profiling from VisualVM and
provide a description of your findings.

Report your performance evaluation in file perf.pdf.

7 Testing

In addition to the code you write for the data structures and text editor plugins, you
should also submit any tests that you write. Testing is a component of the grade for this
assignment.

You should implement your test cases using JUnit, a framework for writing test suites.
JUnit has excellent Eclipse integration that makes it easy to use. A small example demon-
strating how to write JUnit tests is included. To include the JUnit runtime support in
Eclipse, right click on your project and select Build Path > Add Libraries. . . > JUnit > JUnit
5.

You should not only test whether the program works correctly from the command line
interface, but also write test cases for each of the data structures you implement.

Test cases should be placed in a top-level directory named src/tests, whereas the rest
of your implementation would be in src/main.

There are several good strategies for writing test cases. In black-box functional test-
ing, the tester defines input–output pairs in which the inputs provide good coverage of
the input space. Each input is accompanied by the expected output as defined by the
specification. We expect you to define functional test cases for your program as a whole
and for each data structure you implement.

A second approach to testing is random testing, in which the inputs are generated
randomly but in a way that satisfies the preconditions. A random test case might gen-
erate a sequence of randomly chosen inputs to a single method or to a randomly chosen
method from a set of methods. This form of testing can catch bugs simply when the code
fails with an exception or assertion error. Often an effective way to randomly test func-
tional correctness is to test whether the behavior of the code matches that of a simple
reference implementation on which the same operations are performed. For example,
the java.util libraries may be used to build simple reference implementations for each
of the abstractions you are implementing. We expect you to use random testing on at least
one abstraction you develop in this assignment.

CS 2112 Fall 2020 7/10 Assignment 3

8 Written problems

8.1 Abstraction

The standard Java interface SortedSet describes a set whose elements have an ordering.
Abstractly, the set keeps its elements in sorted order. Here is a much simplified version:
1 /** A set of unique elements kept sorted in ascending order. */
2 interface SortedSet<T extends Comparable<T>> {
3 /** Effect: Add x to the set if it is not already there. */
4 void add(T x);
5
6 /** Tests whether x is in the set. */
7 boolean contains(T x);
8
9 /** Effect: Remove element x. */

10 void remove(T x);
11
12 /** Returns the first element in the set. */
13 T first();
14 }

1. The specifications of some of these methods are incomplete. Clearly identify the prob-
lems and write better specifications for the methods that need to be improved. You
may change method signatures if you justify the change.

2. There are many ways to implement this set abstraction. One possibility is as a linked
list data structure in which there are no duplicates and the elements are kept in sorted
order:

class SortedList<T extends Comparable<T>> implements SortedSet<T> {
/**
* A linked list of values starting at {@code head}, which may be {@code null}
* to represent an empty list.
*
* <p>Invariant: the list nodes starting from {@code head} have values in ascending
* sorted order with no duplicates.
*/
ListNode<T> head;

}

class ListNode<T extends Comparable<T>> {
T value;
ListNode<T> next;

ListNode(T v, ListNode<T> n) {
value = v;
next = n;

}
}

CS 2112 Fall 2020 8/10 Assignment 3

The SortedList implementation is obviously incomplete. Give the most efficient, con-
cise code you can to implement the first and remove methods, taking into account the
representation and class invariant.

3. Now, suppose we want a different implementation UnsortedList that is similar to
SortedList and uses the same ListNode class, but has no class invariant:

class UnsortedList<T extends Comparable<T>> implements SortedSet<T> {
/**
* A linked list of values starting at {@code head}, which may
* be {@code null} to represent an empty list.
*/
ListNode<T> head;
...

}

UnsortedList should still correctly implement the SortedSet interface. Implement the
add, first, and remove methods as simply and concisely as you can, taking into account
the representation and class invariant.

Since SortedList and UnsortedList implement the same specification, the client should
not be able to tell which one is being used, except perhaps by timing.

4. Briefly discuss the advantages and disadvantages of each of these two implemen-
tations. Under what conditions it would be more appropriate to use SortedList?
. . .UnsortedList?

8.2 Asymptotic complexity

5. Consider the code snippet below. Give a tight bound on its time complexity using
big-O notation, and briefly justify your answer.
1 for (int i = 5; i < n; i ++) {
2 if (i % 2 == 0) {
3 for (int j = i + 1; j < n; j ++) {
4 for (int k = 7; k < 70000; k++) {
5 System.out.println("2112␣is␣great!");
6 }
7 }
8 }
9 }

6. Show that n2 lg n is O(n3). Be sure to specify a witness pair (k, n0).

7. Is it true that 55n is O(25n)? Give a witness if true, or argue that no such witness exists.

8.3 Hashing

8. Show the state of the underlying array of a hash table, when implemented with chain-
ing and then with linear probing. Assume the hash function is simply n modulo the

CS 2112 Fall 2020 9/10 Assignment 3

length of the array. The elements inserted into the array are 0, 5 ,2, 1, 10, 42, 56, 2112,
2019, 7, 3, 4, 11, 115. The initial length of the array is 5, and the maximum load factor
for the chaining implementation is 2.

For the probing implementation, assume the maximum load factor is one and that the
array size is doubled when it is reached.

9 Submission

Compress exactly these files into a zip file to submit on CMS:

• README.txt: This file should contain your name, the netIds of you and your partner, all
known issues with your submitted code, the names of anyone you discussed the as-
signment with (excluding course staff), and any other sources that should be acknowl-
edged.
In addition, you should briefly describe your design, noting any interesting design
decisions you encountered, and briefly discuss your testing strategy.

• Source code: Because this assignment is more open than the last, you should include
all source code and resources required to compile and run your project. All source code
should reside in the src directory with an appropriate package structure.

• Tests: You should include code for all your test cases in a package named tests sepa-
rate from the rest of your source code. Subpackages are permitted.

• written.txt or written.pdf: This file should include your response to the written
problems.

• perf.pdf: This file should include your performance analysis.

Do not include any .class files or any other extraneous files.
All .java files should compile and conform to the prototypes we gave you. We write

our own classes that use your classes’ public methods to test your code. Even if you do not
use a method we require, you should still implement it for our use.

CS 2112 Fall 2020 10/10 Assignment 3

	Instructions
	Grading
	Partners
	Documentation
	Restrictions
	Importing and Running
	Tips

	Hash tables
	Collisions
	Implementation

	Prefix trees
	Implementation

	Bloom filters
	Example of a false positive
	Implementation

	Text editor
	Architecture
	Dictionary file
	User interaction

	Performance
	Testing
	Written problems
	Abstraction
	Asymptotic complexity
	Hashing

	Submission

