
CS 2112—Spring 2014
Final Project
CritterWorld

Version of September 3, 2014

The final four programming assignments for this course make up a single project that you
will work on as part of a two-person team. In this project, you will simulate a simple world of
animals (“critters”!) that wander around, eat food, reproduce, and evolve. This world will include
a graphical visualization that enables a user to take control of individual animals. Different species
can also interact in this simulated world. Because of evolution, there will be multiple species
eventually even if initially there was only one.

Critters move around on a regular, hexagonal grid. Critters need energy to survive, because
everything they do requires energy. They gain a little energy from the sun each time step as long
as they are not moving. Critters may also attack each other; when critters run out of energy, they
die and become food for other critters. If critters accumulate enough energy, they can reproduce.

The genome of a critter is actually an event-driven program that determines what the critter
does on each time step. When critters reproduce, the genome is copied from the parent or parents
to the new critter, with possibly some mutations applied. This means that critter programs may
change over time and perhaps evolve to make them more effective.

The critter simulation will be implemented as a networked Java service with a graphical front
end. This design permits multiple users to view and interact with the same virtual world.

In summary, this project involves developing the following components:

• a simple parser and interpreter for the critter language

• a graphical user interface

• a distributed implementation of the system

0 Changes to the spec

The following changes have been made since the initial release.

• Corrected example critter rule that checks for same species. (4/14)

• Corrected description of board shape. (4/5)

• Clarified that left and right are turning actions. (3/30)

• Mentioned supporting Java-like // comments. (3/16)

• Clarified that not all mutations make sense on all node types. (3/15)

• A little more explanation of grouping symbols added. (3/10)

• Range of posture and tag values corrected. (3/9)

1

5
0

3
2

1

4

(0, +1)

(+1, +1)

(-1, -1)

(0, -1)

(+1, 0)

(-1, 0)

(0, 0)

Figure 1: Hexes and directions column 0
column 1

column 2
column 3

row 1

row 0

row 2

row 3

row 4

column 4

row 5
row 6

column 5

row 7

Figure 2: Rows and columns of hexes

1 The world

The world that critters live in is a large array of hexagonal tiles called hexes. A given critter is
at any moment located on one of these hexes and facing in one of the six possible directions, as
shown in Figure 1. The world advances in discrete time steps. On each time step, a critter may
perform one of several possible actions, or simply update its internal state and wait for the next
time step while absorbing solar energy.

Hexes are either rock hexes or hexes that contain other things. Rocks are inert obstacles that
critters cannot move onto or over. A non-rock hex may be empty, or it may contain a critter, some
food, or a critter and some food. A hex cannot contain more than one critter.

A certain amount of food is created on a hex when a critter dies there. Other critters may then
eat the food to gain energy.

Hex coordinates. Each hex is identified by a coordinate (c, r) where c is the column and r is
the row on which the hex is located. Both c and r are nonnegative integers. Figure 2 shows the
row and column coordinates of various hexes. The world has a fixed, roughly rectangular shape
that is symmetric with respect to a 180-degree rotation. The lower-left (southwest corner) hex
is at coordinate (0,0). Moving in one of the six possible directions changes the row and column
coordinate of the critter. The corresponding adjustments to row and column coordinates are shown
in Figure 1.

Some coordinates lie outside the world. A coordinate that lies outside the world acts in all ways
as though it is a rock hex. Critters cannot fall off the edge of the world, and they see rock when
they look off the edge. Figure 2 shows a very small world with MAX COLUMN = 5 and MAX ROW = 7.
A coordinate such that c 6≤ MAX COLUMN lies off the east edge of the world. A coordinate such
as (1,0), where c 6≤ 2r, lies off the south edge of the world. And a coordinate where c + (2 ·
MAX ROW − MAX COLUMN) 6≥ 2r lies off the north edge of the world. The world will be roughly

2

square if MAX ROW is about 1.37 times as large as MAX COLUMN.
You might notice that there is a third potential “coordinate” we could specify, corresponding

to lines of hexes slanting upward toward the right. We can define the “slice” s of a given hex as
(r − c), increasing as we move upward along a column or “northwest” along a row. Hexes in the
lower right corner of the map have a negative slice. Using slices, we can compactly represent the
length of the shortest path between two hexes:

max {|∆c|, |∆r|, |∆s|} = max {|∆c|, |∆r|, |∆r −∆c|}

Time The simulation proceeds in time steps. During each time step, each critter is allowed to
take one turn. These turns are taken sequentially, so each critter sees the changes to the state of the
world caused by all critters that have already taken a turn during the current time step. The order
in which critters take turns is fixed. Newly created critters are added to the end of the ordering.
However, being early in the ordering is not an advantage because nothing happens to the state of
the world between time steps.

2 Critter actions

The allowed actions are the following:

• Wait. The critter waits until the next turn without doing anything except absorbing solar
energy.

• Move forward or backward. A critter uses some energy to move forward to the hex in front
of it or backward to the hex behind it. If it attempts to move and there is a critter or rock in
the destination hex, the move fails (but still takes energy)

• Turn. It may rotate 60 degrees right or left. This takes little energy.

• Eat. A critter may eat as much food that is sitting on its current hex as it can. It gains energy
from any food that it eats. If the amount of food that is on the hex is more than it can absorb,
the remaining food is left on the hex.

• Serve. A critter may convert some of its own energy into food dropped onto its hex.

• Attack. It may attack a critter directly in front of it. The attack removes an amount of energy
from the attacked critter that is determined by the size and offensive ability of the attacker
and the defensive ability of the victim.

• Tag. The critter may tag the critter in front of it—for example, to mark that critter as an
enemy or friend.

• Grow. A critter may use energy to increase its size by one unit.

• Bud. A critter may use a large amount of its energy to produce a new, smaller critter with
the same genome (possibly with some random mutations).

3

• Mate. A critter may attempt to mate with another critter in front of it. For this to be suc-
cessful, the critter in front must also be facing toward it and attempting to mate in the same
time step. If mating is successful, both critters use energy to create new size 1 critter whose
genome is the result of merging the genomes of its parents. Unsuccessful mating uses little
energy.

3 Critter state

Critter state comprises several attributes, along with the program that drives the critter. The critter
has a current location in the world and a current direction, represented as an integer in 0..5, as
shown in Figure 1. It also has a current size and energy. The critter also has some fixed attributes:
its offensive and defensive ability, the size of its memory, and the rules governing its behavior.

Two parts of critter state control how it appears to other critters: its posture, which it can change,
and its tag, which other critters can change. The posture is an integer between 0 and 99, which the
critter may change arbitrarily. The tag is an integer between 0 and 99 and is initially 0. It may be
changed by any other critter using its tag action, but a critter is not able to change its own tag.

Each critter has a derived attribute, its complexity. This is a weighted sum of the number of its
rules, the size of its memory, and its offensive and defensive abilities. The energy of certain actions
the critter performs depends on its complexity. The formula for complexity is found in Section 12.

4 Critter memory

Each critter has a memory called mem, which is an array of fixed length containing integers. The
first few entries in this array have a meaning that is the same for all critter species:

• mem[0]: the length of the critter’s memory (immutable, always at least 8)

• mem[1]: defensive ability (immutable, ≥1)

• mem[2]: offensive ability (immutable, ≥1)

• mem[3]: size (variable, but cannot be assigned directly, ≥1)

• mem[4]: energy (variable, but cannot be assigned directly, ≥1)

• mem[5]: pass number, explanation below (variable, but cannot be assigned directly, ≥1).

• mem[6]: tag (variable, but cannot be assigned directly. Always between 0 and 99.)

• mem[7]: posture (assignable only to values between 0 and 99).

There are three kinds of memory entries: immutable entries that never change, variable entries
that reflect the current state of the critter but that the critter’s rules cannot assign to, and general-
purpose mutable entries that can be both read from and assigned to by critter rules.

The size of the critter’s memory must be at least 8 to accommodate these entries. If the size is
larger, the remaining entries, indexed starting at 8, are general-purpose entries.

4

program → rule*

rule → condition --> command ;

command → update* update-or-action
update-or-action → update | action

update → mem [expr] := expr
action → wait | forward | backward | left | right

| eat | attack | grow | bud | mate

| tag [expr] | serve [expr]

condition → conjunction (or conjunction)*

conjunction → relation (and relation)*

relation → expr rel expr | { condition }

rel → < | <= | = | >= | > | !=

expr → term (addop term)*

term → factor (mulop factor)*

factor → 〈number〉 | mem [expr] | (expr) | sensor
sensor → nearby [expr] | ahead [expr] | random [expr]

addop → + | -

mulop → * | / | mod

Figure 3: Grammar for critter rules

5 Rule language

The grammar for the rules is given as a context-free grammar in so-called EBNF (Extended
Backus-Naur Form1) in Figure 3. In EBNF grammars, the right-hand side may be a regular ex-
pression. EBNF does not add any real expressive power to context-free grammars, but makes them
easier to express concisely. Terminal symbols are shown in typewriter font. Terminal symbols
whose lexical representation is not fixed are shown using angle brackets: for example, 〈number〉.
Non-terminals are shown in italics, like this: program.

To simplify parsing, parentheses are used for grouping expressions, whereas braces are used
for grouping conditions, and brackets are used for grouping arguments to commands and sensors.

The parser should ignore blank lines and parts of lines that start with a double slash (//).

1Despite its name, EBNF is apparently not due to either Backus or Naur!

5

5.1 Syntactic sugar

Convenient abbreviations may be used in place of expressions of the form mem[n] for certain literal
constant integers n. This syntactic sugar (so-called because it “sweetens the syntax”) may be used
both when programs are read from a file, and when programs are displayed to the user. Regardless
of how the expression is written in the input file or displayed to the user, the underlying abstract
syntax tree node is always of the form mem[n]. The full list of abbreviations is as follows:

Abbreviation AST representation
MEMSIZE mem[0]

DEFENSE mem[1]

OFFENSE mem[2]

SIZE mem[3]

ENERGY mem[4]

PASS mem[5]

TAG mem[6]

POSTURE mem[7]

Therefore, a rule like mem[3]>1000 --> mem[11] := mem[11] - mem[4]; can be written
and displayed completely equivalently as SIZE>1000 --> mem[11] := mem[11] - ENERGY;

5.2 Executing rules

When it is a critter’s turn, it finds the first rule in its list of rules whose condition is true. It then
performs all of the updates on the right-hand-side of the rule, along with the action, if any. If the
command for the rule contains no action, the process repeats: starting again from the very first
rule, it finds the earliest rule whose condition holds, and performs its command. This process is
performed up to 999 times, after which the critter automatically performs a wait action. If on
any pass through the rules, no rule’s condition is true, the critter’s turn immediately ends and it
performs a wait action on that turn.

The special memory location mem[5] (PASS) reports which pass through the rules is being
done. It has the value 1 on the first pass through the rules, 2 on the second pass (if any), then 3, and
so on up to a maximum of 999. It starts over again at 1 on the critter’s next turn.

It may be possible to accelerate running the rules in various ways. For example, later passes
might only check rules whose condition could possibly have become true. Or, if the selected rule
has no effect on critter state, the critter will never select any other rule and there is no reason to run
further passes. However, these sorts of optimizations are not required.

6 Sensing

A critter can sense its immediate surroundings using sensor expressions as described in the gram-
mar.

6

• The expression nearby[dir] reports the contents of the hex in direction dir , where 0 ≤
dir ≤ 5. Here the direction is relative to the critter’s current orientation, so 0 is always
immediately in front, 1 is 60 degrees to the right, and so on. (If d is out of bounds, its
remainder when divided by 6 is used.) The contents are reported as a number n, as follows:

– 0: the hex is completely empty

– n > 0: the hex contains a critter with appearance n (see Section 7).

– n < −1: the hex contains no critter, and total food value is −(n + 1).

– n = −1: the hex contains a rock.

• The expression ahead[dist] reports the contents of hex that is directly ahead of the creature
at distance dist , using the same scheme as nearby. If dist is not positive, ahead evaluates as
if it were ahead[−dist−1], except that critter that is on the hex is ignored. Thus, ahead[0]
reports on the appearance of the current critter, whereas ahead[-1] reports on the hex under
the critter, ignoring the critter itself, and ahead[-2] reports on the hex ahead of the critter,
while ignoring any other critter that is located there.

• The random expression generates a random integer from 0 up to one less than the value of
the given expression. Thus, random[2] gives either 0 or 1 randomly. For n < 2, random[n]
always is zero.

7 Critter appearance

Memory entry mem[6] (sugar: TAG) contains the critter’s tag, which is initially zero and is set to
some other value only when some other critter tags it. The action tag[expr], where expr evaluates
to some value v, causes the critter in front of it to acquire the tag v. The action has no effect if v is
not a legal tag value.

The entry mem[7] (sugar: POSTURE) contains the critter’s posture, which defines part of how it
looks to other critters. The posture can be used as a way to signal to other nearby critters what the
current critter is up to, or as a way of signaling species identity. Initially zero, the posture it is set
by simply assigning to its memory location.

When a critter is seen by another critter (or by itself, using ahead[0]), its appearance is re-
ported as a positive integer, equal to tag ∗100,000+size ∗1,000+posture ∗10+direction. In other
words, if the tag is TT, the size is SS, the posture is PP, and the direction is D, then the appearance
is TTSSPPD. Note that both the critter’s tag and posture are less than 100. A newly created critter
has size 1, posture 0, and tag 0, so its appearance is 1,000 + direction. Here, direction is, as usual,
one of {0, . . . , 5}, and is reported relative to the observing critter’s own direction. For example, a
direction of 3 means that the observed critter is facing in the direction opposite from that of the ob-
serving critter. Critter programs can use the operators mod and / to extract the different components
of the appearance.

7

8 Energy and size

A critter has an initial size of 1 but can increase its size using the action grow. Size affects energy
expenditure but also makes the critter more effective at some actions. Size also determines the
maximum energy of the critter. For each point of size, the critter can hold ENERGY PER SIZE = 500
points of energy. Any updates that would increase energy beyond this point cause excess energy to
be discarded.

If energy ever goes to (or below) zero, the critter dies. Its death adds to the food on its hex a
number of food points equal to FOOD PER SIZE (= 200) points per point of critter size.

9 Attacking and defending

When one critter attacks another, some damage is done to the defending critter (the victim). This
subtracts energy from the victim. If the victim’s energy goes to zero (or lower), the victim dies and
is turned into an amount of food proportional to its size.

When one critter attacks another, the damage done depends on the sizes of the two critters.
If critter 1 attacks critter 2, and S1 and S2 are the sizes of the corresponding critters, O1 is the
offensive ability of critter 1, and D2 is the defensive ability of critter 2, the energy removed from
critter 2 is:

BASE DAMAGE · S1 · P (DAMAGE INC · (S1 ·O1 − S2 ·D2))

where BASE DAMAGE = 100, DAMAGE INC = 0.2, and P (x) is the logistic function:

P (x) =
1

1 + e−x

This formula means that critters do damage proportional to their size, but that they do only half
their maximum damage if they are evenly matched against the defending critter. Damage falls off
quickly to zero when attacking a critter with a higher effective defense.

10 Mutation

When a critter’s genome is copied to a new critter, the copy may be perfect. But with probability
p = 1/4 there will be at least one mutation. If there is one mutation, there is then a 1/4 chance (that
is, 1/16 overall) of a second mutation, and so on for possible additional mutations.

A mutation is either a change to an attribute or a change to the rule set, with each equally
probable. The attributes that may change are the size of the memory and the offensive and defensive
abilities. A change to an attribute is an increment or decrement, chosen with equal probability, to
one of these three attributes, chosen with equal probability. However, changes to attributes never
reduce them below their minimal legal value (8 for memory size, 1 for offense and defense).

A mutation to the rule set is performed by randomly picking a node in the abstract syntax tree
describing the entire set of rules. All nodes are chosen with equal probability. Given that a node
has been selected, one of the following changes is made, with equal probability among each of the
possible alternatives:

8

1. The node is removed. If its parent node needs a replacement child, one of its children of the
right kind is used. The child to be used is randomly selected. Thus, rule nodes are simply
removed, but binary operation nodes would be replaced with either their left or right child.

2. The order of two children of the node is switched. For example, this allows swapping the
positions of two rules, or changing a− b to b− a.

3. The node and its children are replaced with a copy of another randomly selected node of the
right kind, found somewhere in the rule set. The entire AST subtree rooted at the selected
node is copied.

4. The node is replaced with a randomly chosen node of the same kind (for example, replacing
attack with eat, or + with *), but its children remain the same. Literal integer constants
are adjusted up or down by the value of java.lang.Integer.MAX VALUE/r.nextInt(),
where legal, and where r is a java.util.Random object.

5. A newly created node is inserted as the parent of the mutated node. The previous parent
becomes the parent of the inserted node, and the mutated node becomes a child of the inserted
node. If the inserted node has more than one child, the children that are not the original node
are copies of randomly chosen nodes of the right kind from the whole rule set.

6. For nodes with a variable number of children, an additional copy of one of the children,
randomly selected, is appended to the end of the list of children. This applies to the root
node, where a new rule can be added, and also to command nodes, where the sequence of
updates can be extended with another update.

Notice that not all mutations make sense on all node types. The mutations that may occur are
those are feasible and result in a well-formed AST: that is, one that could be the result of parsing
an input file.

11 Budding and mating

When a new critter is created by budding, it appears directly behind the critter doing the budding.
When two critters mate, it appears directly behind one of the two critters, chosen at random.

When a new critter is created by budding, its rules are copied from its parent, modulo possible
mutation. Its attributes are also copied from the parent, with the exception of energy, size, posture,
and tag. Energy is set to a constant INITIAL ENERGY = 250, size is always set to 1, posture is
always set to 0, and the tag is always set to 0. All memory locations at or above index 8 are set to
zero in the newly created critter.

When two critters mate, however, they exchange genetic material to form the new critter. At-
tributes 0–2 are chosen from between the two critters randomly. Attributes 3–5 are chosen as for
budding. The new rule sequence is chosen by picking the corresponding rule in sequence from
either the ‘mother’ or the ‘father’, at random. Thus, the new critter inherits, in general, some rules
from each parent. If the mother or father have different-sized rule sets, the new rule set either has
the size of the mother or the father, randomly chosen. Thus, if the mother and father have identical
genomes, and there are no mutations, the child will have the same genome too.

9

12 Energy

Different actions take different amounts of energy, even waiting for a turn. The energy cost of
different actions is as follows:

• wait : this action increases the critter’s energy by its own size times SOLAR FLUX (= 1).

• tag, left (turn), right (turn), eat : energy equal to the critter’s size.

• forward and backward: energy equal to the critter’s size times MOVE COSTwhere MOVE COST

= 3.

• serve : the amount of energy served onto the hex, plus the creature’s size. A critter can use
the action serve to send its own energy down to zero, killing it, but not below. A critter that
kills itself in this way deposits additional food onto the hex in the usual way.

• attack : energy equal to the critter’s size times ATTACK COST = 5.

• grow : energy equal to size · complexity · GROW COST where GROW COST = 1.

• bud : BUD COST · complexity energy, where BUD COST = 9.

• mate : MATE COST ·complexity energy, where MATE COST = 5.

Several of these energy costs depend on the critter complexity. If r is the number of rules in the
critter program and offense and defense are the critter’s offensive and defensive abilities, the critter
complexity is equal to:

r · RULE COST + (offense + defense) · ABILITY COST

Most actions take the same energy whether they are successful or unsuccessful. One exception
is the mate action, which only costs as much as turn if it is unsuccessful.

13 Handling out-of-bounds arguments

One important principle is that syntactically legal critter programs always evaluate successfully.
Even when an argument to a sensor or action might seem to be out of bounds, the expression or
action will complete. Mutation to critter programs can never cause the simulation as a whole to
fail.

Handling ostensibly out-of-bounds arguments is handled in the following way for the various
language constructs:

• mem[expr]: A read from a memory location expr where expr is not a valid memory index
always returns 0. An update to an illegal memory location has no effect. An update to a
memory location whose value is constrained (in particular, mem[7]) also has no effect if the
value is out of bounds for that location.

• tag[expr]: If expr evaluates to a tag value that is illegal, it has no effect.

10

• + and -: these operate exactly like Java + and -.

• / and mod: If the divisor is zero, the result of the expression is also zero.

• nearby[expr]: the remainder of expr when divided by 6 is used as the direction.

• random[expr]: always zero when expr < 2.

14 Example critter program

The following critter program should be able to survive, find food, and reproduce.

POSTURE != 17 --> POSTURE := 17; // we are species 17!

{nearby[3] = 0 or nearby[3] < 0-1} and ENERGY > 2500 --> bud;

{ENERGY > SIZE * 400 and SIZE < 7} --> grow;

ahead[0] < 0-1 and ENERGY < 500 * SIZE --> eat;

// next line attacks only other species

(ahead[1]/10 mod 100) != 17 and ahead[1] > 0 --> attack;

ahead[1] < 0-5 --> forward;

ahead[2] < 0-10 and ahead[1] = 0 --> forward;

ahead[3] < 0-15 and ahead[1] = 0 --> forward;

ahead[4] < 0-20 and ahead[1] = 0 --> forward;

nearby[0] > 0 and {nearby[3] = 0 or nearby[3] < 0-1} --> backward;

random[3] = 1 --> left;

1 = 1 --> wait; // mostly soak up the rays

15 Constants

Numbers used in this document are mostly parameters that have symbolic names. We may fiddle
with the values of these parameters to make the simulation more interesting, so you should always
use the symbolic names rather than hard-coding them into your program. We are providing a file
containing the current values of these constants; your program should parse the file at run time to
set them to the correct values.

The current values of the simulation constants are shown in Figure 4. Most of the constants are
integers, but a few are real numbers, as indicated by the presence of a decimal point.

16 Challenges

This project has several very different kinds of subsystems. One of the major challenges will be
to keep the different parts of the system separate, so that, for example, your simulation code is
entirely separate from your graphics code. This particular separation will be crucial for making
an distributed version of the program, since the simulation and the displays will be done on a
completely different machines. Therefore the simulation code needs to avoid knowing about or
naming the graphics code. Similarly, you will want to separate different parts of the simulation

11

http://www.cs.cornell.edu/courses/cs2112/2012fa/project/constants.txt
http://www.cs.cornell.edu/courses/cs2112/2012fa/project/constants.txt

Name Value Description
BASE_DAMAGE 100 The multiplier for all damage done by attack-

ing
DAMAGE_INC 0.2 Controls how quickly increased offensive or

defensive ability affects damage
ENERGY_PER_SIZE 500 How much energy a critter can have per point

of size
FOOD_PER_SIZE 200 How much food is created per point of size

when a critter dies
MAX_SMELL_DISTANCE 10 Maximum distance at which food can be

sensed
ROCK_VALUE -1 The value reported when a rock is sensed
MAX_COLUMN 49 Maximum column index in the world map
MAX_ROW 67 Maximum row index in the world map
MAX_RULES_PER_TURN 999 The maximum number of rules that can be

run per critter turn
SOLAR_FLUX 1 Energy gained from sun by doing nothing
MOVE_COST 3 Energy cost of moving (per unit size)
ATTACK_COST 5 Energy cost of attacking (per unit size)
GROW_COST 1 Energy cost of growing (per size and com-

plexity)
BUD_COST 9 Energy cost of budding (per unit complexity)
MATE_COST 5 Energy cost of successful mating (per unit

complexity)
RULE_COST 2 Complexity cost of having a rule
ABILITY_COST 25 Complexity cost of having an ability point
INITIAL_ENERGY 250 Energy of a newly birthed critter
MIN_MEMORY 8 Minimum number of memory entries in a

critter

Figure 4: Constants

12

into different modules. Your programming tasks will be simpler if the interpretation of critter rules
is kept separate from the mechanics of the world and even of the critter itself.

Thoughtful design up front along with your partner will save you a tremendous amount of time
later on. Meet early with your partner and decide on how you will structure your project and agree
on interfaces and specifications that connect the different parts of the code.

17 Extensions

You may add extensions to the critter simulation, but you need not. Chances are you’ll have your
hands full just implementing the project as is, so be judicious about adding new features.

Possible extensions might be additions to the critter language (abbreviations? function defini-
tions?), to the critter model (better sensory capabilities?), changes to the world (volcanos? water?
plants that grow food? climate gradients?), better user control over the world view (zooming and
panning? high-level critter commands?). Feel free to be creative. If your extensions might inter-
fere with our testing, for example by making our critter programs invalid, be sure to support a
command-line flag -compatible that turns off your extra features. We recommend being back-
ward compatible to our specification in any case.

18 Tournament

We’ll have a tournament at the end of the class when you can bring in some critter programs
to compete in various events such as survival, food gathering, and a maze race. We encourage
participation in the tournament, and there will be free food, but the fun is optional. We’ll post more
information about the tournament as it approaches.

13

	Changes to the spec
	The world
	Critter actions
	Critter state
	Critter memory
	Rule language
	Syntactic sugar
	Executing rules

	Sensing
	Critter appearance
	Energy and size
	Attacking and defending
	Mutation
	Budding and mating
	Energy
	Handling out-of-bounds arguments
	Example critter program
	Constants
	Challenges
	Extensions
	Tournament

