CS2112—Fall 2014

Assignment 4
Parsing and Fault Injection
Due: March 18, 2014
Overview draft due: March 14, 2014

Compilers and bug-finding systems operate on source code to produce compiled code and lists
of possible bugs detected. This software needs a lot of test cases, and test cases which are programs
are expensive to generate. Fault injection is a technique for inexpensively generating such test
cases. The idea is to take a valid program and make small random changes to it to produce many
useful test cases.

For testing a compiler, we want both test cases that are valid programs in the programming
language, and also test cases that are invalid programs (however, you will only produce valid
programs in this assignment). For bug finders, the test cases are valid programs that contain bugs.
In this assignment, you will be building the latter kind of fault injector, in which a valid program
is changed into another valid program. You will use fault injection on programs to implement
mutations on the behavior of a simulated critter.

In this assignment, you will also build a parser for a simple language and a pretty-printer that
can print out parsed programs in a nicely formatted form.

0 Changes

* Fixed parse tree example diagram to match grammar (3/16)
* Added explicit overview draft due date (3/13)

* The source code (Token. java, Tokenizer. java) was updated with support for the serve
token. (3/10)

1 Instructions

1.1 Group Project

This assignment is the first part of the group project for the course. The programming language you
will be parsing, pretty-printing, and injecting faults into will be the language controlling simulated
creatures. You will need to read the CritterWorld Project Specification| to find out more about the
final project and the language you will be working with in this assignment. The faults that are
being injected are those corresponding to the mutations in Section 10 of the project specification.

CS2112 Spring 2014 1 Assignment 4


http://www.cs.cornell.edu/Courses/cs2112/2014sp/project/project.pdf

1.2 Partners

You will work in a group of two students for this assignment. Obviously, it is important that you
find your partner very soon. Piazza has support for finding a partner.

1.3 Overview Document

Starting with this assignment, we expect your group to submit an overview document. You will
want to read the Overview Document Specification to learn what we are expecting. Writing a
clear document with good use of language is important.

We are requiring you to submit an early draft of your design overview document on Friday
before the assignment is due. You may not be able to predict what your design and testing strategy
will look like in full at that point, but we want to see how far you have gotten. We will aim to give
you quick feedback on this draft.

1.4 Version Control

One of the key learning goals for this project is how to work with a partner effectively. As such,
we would like you to use version control in managing your partnership. You may choose to use
any system you like - common industry standards include Git, Subversion, and Mercurial. One or
more of these systems will be covered in lab. You must submit along with your project a file called
log.txt which shows us your commits from your time together with your partner. Don’t think
of this as extra work. While it may require some learning, you will reap the benefits as you delve
further into this and upcoming projects. Furthermore, it is a valuable skill to have, as any large
piece of modern software is always managed with version control.

1.5 Restrictions

You may use any standard Java libraries from the Java SDK. However, you may not use a parser
generator.

2 Parsing

2.1 Overview

Parsing involves converting an input sequence of text, such as a program, into a tree structure
according to a grammar. The Java compiler, for example, is a parser that converts programs you
write into an executable form. You will apply this same idea to parse a program written in a critter
language into an internal abstract syntax tree representation that your program can understand,
execute, and modify.

The grammar for the language you will be parsing is given in the project specification. The
grammar describes the concrete syntax of critter programs, including all the tokens that are part of
the input.

CS2112 Spring 2014 2 Assignment 4


http://www.cs.cornell.edu/Courses/cs2112/2014sp/hw/overview-requirements.html

+ expr

’ ¥ ¥ N

2 * term + term
" 14 v
3 4 factor factor
v SRS
number(2) expr
BinaryOp(+) *

/ \ term

Num(2) BinaryOp(*) / l \
Y\ factor *  factor
Num(3) Num(4) v v
number(3)  number(4)

abstract syntax tree parse tree

Figure 1: Abstract and concrete syntax trees for 2+(3*4)

However, the job of the parser is not construct the concrete syntax tree; instead, it should build
an abstract syntax tree.

2.2 Abstract Syntax Trees

An abstract syntax tree (AST) represents the syntax of some input while avoiding representing
parts of the syntax that do not affect the meaning of the input. For example, the expressions
(2+3%4), 2+(3%4), and (2) + (3)*(4) all would have the same abstract syntax tree, because
the parentheses are only there to guide the construction of the tree. Figure |I| shows this abstract
syntax tree, along with the concrete syntax tree (parse tree) for 2+(3*4). The AST is shown on
the left in two different forms: the top represents how we might think of the AST, while the bottom
corresponds more closely to the code, and uses some of the classes we have supplied to you for
use in AST construction.

Because the tree structure implicitly represents many syntax details, it omits any syntax that
is unnecessary. This is what makes it different from a concrete syntax tree or a parse tree, which
include all syntax included in a program. This distinction will become critically important when
you implement fault injection. Fault injection will be much more difficult if your abstract syntax
tree has concrete parse tree nodes such as parentheses in it, or nonterminals that exist only to
represent different levels of precedence.

CS2112 Spring 2014 3 Assignment 4



You will need to design and implement a class hierarchy to represent this tree, in which the
leaves are subclasses of Node. By giving Node the right methods, it will be possible to recur-
sively implement various useful functionality, including fault injection and in a later assignment,
evaluation.

2.3 Provided Classes

We have provided an implementation of a Tokenizer as well as interfaces and some classes to get
you started with defining your AST. You may not need to use all of these but you will probably
need to add more.

3 Fault Injection

Since we are using fault injection to simulate a genome mutation for a critter, see the project
specification for how this mutation is to be done. The key to correct fault injection is that for this
project, it will mutate a program in such a way that the resulting program is still a legal critter
program, though it does not, perhaps, do what it was originally intended to do.

There is some flexibility in how to interpret the mutation rules given in the project specification.
You should identify any ambiguities you see and explain how you have resolved them. One rule
of thumb is that it should be possible, though some sequence of mutations, to change any program
into any other program.

There are many different kinds of nodes in the AST, so implementing mutation for each of them
could involve a lot of tedious code and opportunities for mistakes. Think about how to abstract the
various kind of mutations so that you can share mutation code across multiple node types. Can you
create a common framework so that most mutation types can be implemented in a common way,
rather than creating complex logic specific to each combination of node type and mutation type?
The supplied code suggests some method signatures that might be useful starting points, but you
can change them. You have a lot of flexibility about how to implement this.

4 Pretty-Printing

You should be able to print out programs in the same syntax they were written in, meaning that
the programs you print would generate the same abstract syntax tree if you were to parse them
again. Pretty-printing should make use of indentation (though not the ASCII tab character!) and
line breaks in order to make output readable and, well, pretty.

5 User Interface

Your program must be able to be run from the command line as follows:

CS2112 Spring 2014 4 Assignment 4



* java —jar <your_jar> <input_file>
parse the file input _file as a critter program and pretty-print the the program to standard
output.

* java -jar <your_jar> --mutate <n> <input_file>
parse the file input_file as a critter program and apply n mutations. After each mutation,
print a description of the kind of mutation that has been applied and pretty-print the program.

6 Overview of Programming Tasks

Because you will want to figure out with your partner how to break up the work involved in this
assignment, it is good to start thinking about some of the major tasks involved:

* Implementing the main program and command-line handling.

* Designing and implementing a class hierarchy of classes for representing abstract syntax
trees. These will be subclasses of Node. We have given you a start on some of these classes,
but you will likely need to add more.

* Implementing the Parser class to generate abstract syntax trees.
* Implementing pretty-printing functionality, as methods on AST nodes.

* Implementing a class or classes to perform fault injection. It is up to you to design the
interfaces for these classes.

CS2112 Spring 2014 5 Assignment 4



7 Written problem

Recall that a function f(n) is O(g(n)) if there exist constants k& and n such that for all n > ny,
f(n) < kg(n). The constants k and n, together are a witness to the fact that f(n) is O(g(n)).

For each of the following functions, show by giving a witness that it is O(n?), or else show that
itisn’t O(n?) by arguing that no such witness can exist.

32+ 10n+1

o O

* nlgn

n3/lgn
¢ f(n) + h(n), where each of f(n) and h(n) are O(n?).

8 Submission

You should compress exactly these files into a zip file that you will then submit on CMS:

* Source code: You should include all source code required to compile and run the project.
* Tests: You should include code for all your test cases.
* overview.txt/html/pdf: This file should contain your overview document.

* log.txt: A dump of your commit log from the version control system of your choice.

Do not include any files ending in . class.

You should also separately submit your work on the written problems in written-problems.txt
(.doc and .pdf also permitted).

9 Tips

The key to success on this assignment will be for both partners to contribute effectively. However,
working with a partner may be challenging. Some tips:

* Meet with your partner as early as possible to work out the design and to divide up the
responsibilities for the assignment. Keep meeting and talking as the project progresses. Be
prepared for your meetings. Be ready to present proposals to your partner for what to do,
and to explain the work you have done.

» The way to partition an assignment into parts that can be worked on separately is to first
agree on what the different modules will be, and further, exactly what their interfaces are,
including detailed specs.

CS2112 Spring 2014 6 Assignment 4



* Drop by office hours and explain your design to a member of course staff as early as possible.
This will help you avoid big design errors that will cost you as you try to implement.

* This project is a great opportunity to try out pair programming, in which you program in a
pilot/copilot mode. It can be more fun. It also tends to result in fewer bugs. A key ingredient
is to give the person typing the job of convincing the other person that the code meets the
spec. Of course, you need to agree on a spec first. It will be tempting to let the person who
is more confident about how to implement the code the pilot/typist role; you will probably
be more successful if you do the reverse.

* This project is also a great time to start doing code reviews with your partner. Walk through
your code and explain to your partner what you’ve done, and convince your partner your
design is good. Be ready to give and to accept constructive criticism!

» Sometimes people feel that they are working much harder than their partner. Remember that
when you go to implement something, it tends to take about twice aas long as you thought it
would. So what your partner is doing is also twice as hard as it looks. If you think you are
working twice as hard as your partner, you're probably about even!

As usual, we encourage you to read all Piazza posts because often your questions have already

been asked by someone else—even before it occurs to you to ask. You will save a lot of time this
way.

CS2112 Spring 2014 7 Assignment 4



	Changes
	Instructions
	Group Project
	Partners
	Overview Document
	Version Control
	Restrictions

	Parsing
	Overview
	Abstract Syntax Trees
	Provided Classes

	Fault Injection
	Pretty-Printing
	User Interface
	Overview of Programming Tasks
	Written problem
	Submission
	Tips

