
CS 2112—Spring 2014
Assignment 3

Data Structures and Web Filtering
Due: March 4, 2014 11:59 PM

Implementing spam blacklists and web filters requires matching candidate domain names and
URLs very rapidly against a long list of blacklisted domains. In this assignment you will be imple-
menting core data structures and algorithms for such a filter. The first part focuses on implementing
a generic hash table, a prefix tree, and a Bloom filter. The second part requires you to create an
application that can determine whether an input string matches a blacklist of known bad strings.
Finally, there is a written problem for you to turn in.

0 Instructions

0.1 Grading

Solutions will be graded on both correctness and style. A correct program compiles without errors
or warnings, and behaves according the the requirements given here. A program with good style is
clear, concise, and easy to read.

For this assignment, we are especially looking for good documentation of the interfaces imple-
mented by your data structures. Write Javadoc-compliant comments that crisply explain what all
the methods do at a level of abstraction that enables a client to use your data structure effectively,
while leaving out unnecessary details.

0.2 Partners

You must work alone for this assignment. But remember that the course staff is happy to help with
problems you run into. Use Piazza for questions, attend office hours, or set up meetings with any
course staff member for help. Read all Piazza posts, because often your questions have already
been asked by someone else, even before you think to ask them.

0.3 Restrictions

Your use of java.util will be restricted for this assignment. Classes from java.util cannot
be used anywhere in your code except in the JUnit test harness (but Scanner may be used any-
where). Interfaces from java.util can be used anywhere in your code to guide your internal data
structures. Other external Java libraries will generally not be allowed, either.

While we require that you respect any interfaces we release, you should note that you are
allowed to (and even expected to) introduce your own classes to solve portions of the assignment.

CS 2112 Spring 2014 1/8 Assignment 3

1 Hash Tables

1.1 Overview

For an overview of how hash tables work, you should refer to the lecture notes.
You may use hashCode(), Java’s default hash function. Your hash table should implement the

latest java.util.Map interface which uses generics.
For the Set that must be returned by the keyset() method, you are not required to implement

the full Set interface. We will require only that it implements isEmpty(), size(), contains(),
and toArray() returning an Object array. Other methods may throw an UnsupportedOperationEx-
ception.

1.1.1 Collisions

When different keys map to the same bucket, it is called a collision.
Chaining involves putting keys and elements into a linked list at the bucket. The linked list is

then searched for the key. We recommend you use chaining to handle collisions.
You may want to consider keeping track of the load factor, resizing your table whenever it

crosses a threshold. A smart choice of load factor will keep memory usage reasonable while
avoiding collisions.

1.2 Implementation Requirements

Hashing aside, the operations containsKey, put, get, and remove should have expected O(1)
runtime. Your hash table should use O(n) space, where n is the number of elements being held.

2 Prefix Trees

2.1 Overview

A prefix tree, also known as a trie, is a data structure tailored for storing and retrieving strings. The
root node represents the empty string. Each possible next letter branches to a different child node.
For each node where a string terminates, that node may contain either the value of the string or a
flag indicating the string termination. In the latter representation, every string in the data structure
is determined by the path along the trie. Figure 1 shows an example of a trie. Your trie should
implement the Trie interface that we provide.

2.2 Implementation Requirements

Your implementation should support insert, delete, and contains in O(k) time, where k is the
length of the string. That is, run time should be proportional to the string length.

CS 2112 Spring 2014 2/8 Assignment 3

Figure 1: A trie containing the strings CS, COW, CS2110, and CS2112, where string terminations are
represented by the value of the strings at the corresponding nodes.

3 Bloom Filters

A Bloom filter is a probabilistic constant-space data structure for testing whether an element is
in a set. It is probabilistic in the sense that a false positive may be returned (i.e., an element is
determined to be in the set when it is not) but false negatives cannot occur. A Bloom filter with
nothing in it is a bit array of 0s.

To insert an element into a Bloom filter, put the element through k different hash functions.
Use the integer results of those hash functions as indices into the bit array. Set those k bits in the
bit array to 1.

To simulate k different hash functions for String objects, you may append single characters to
the end of your Strings before hashing (e.g. a, b, c, . . .). To determine if an element is not in the
Bloom filter, check all of its hash indices. If any of them is zero, the element must not be in the
Bloom filter.

3.1 An Example of a False Positive

Suppose you have a Bloom filter for String objects represented by a bit array of length 2, initially
empty, using only one hash function. To insert CS2112, we compute its hash value (suppose
it hashes to 0), and we set that bit to 1 in the bit array. Now, to check whether CS2110 is in the
Bloom filter, we compute its hash value (suppose it also hashes to 0). We see that the bit at position

CS 2112 Spring 2014 3/8 Assignment 3

0 is set to 1, and so we conclude the Bloom filter may contain the String CS2110.

3.2 Implementation Requirements

The size of the bit array backing your Bloom filter and the number of hash functions you use affects
the probability of false-positive results.

Your Bloom filter should implement the BloomFilter interface that we provide.

4 Web Filter

Your web filter will take in URL(s) as input parameters and determine whether they match a black-
list of bad URLs. Your web filter should implement the WebFilter interface that we provide. You
should assume that the input source for blacklists is a newline-separated file containing millions of
URLs.

Console interface

For Homework 3, we have provided a sample interface but you are welcome to change it as you
see fit:

• clearFilter: empty the web filter blacklist

• addBlacklist <blacklist file>: add the URLs from the file specified to the web filter.

• filter <input urls> <filtered urls>: read URLs from the input urls file. For
each URL that is in the web filter, add it to a newline-separated output file specified by
filtered urls.

• perf <input urls> <n>: read up to nURLs from the input urls file. Determine whether
each URL is in the filter and report how many passed the filter, along with the total time taken
in milliseconds. If n is larger than the number of URLs in the input, the existing URLs are
reused repeatedly until n total URLs have been tested.

5 Performance

Performance analysis is a component of the grade for this assignment. You should choose data
structure(s) wisely to be efficient in both memory usage and performance. Justify your design in
README.txt. We are looking for quantified comparisons of performance when you use different
data structures to back the web filter. Feel free to make use of System.currentTimeMillis()
for timing and VisualVM for memory profiling. Correctness and performance are both important
when we evaluate how well the web filter works.

CS 2112 Spring 2014 4/8 Assignment 3

6 Testing

In addition to the code you write for data structures and the web filter, you should also submit any
tests that you write. Testing is a component of the grade for this assignment.

You should implement your test cases using JUnit, a framework for writing test suites. JUnit
has excellent Eclipse integration that makes it easy to use. We have included a small example to
demonstrate how to write JUnit tests, and we have scheduled a lab about using JUnit.

You should not only test whether the program works correctly from the command line interface,
but also should write test cases for each of the the data structures you implement. There are several
good strategies for writing test cases.

In black-box functional testing, the tester defines input–output pairs in which the inputs provide
good coverage of the input space. Each input is accompanied by the expected result as defined by
the specification. We expect you to define traditional functional test cases for your program as a
whole and for each data structure you implement.

A second approach to testing is random testing, in which the inputs are generated randomly,
though in a way that satisfies the preconditions. A random test case might generate single ran-
domly chosen method calls or a sequence of randomly chosen method calls against an object of
the tested class. This form of testing can catch bugs simply when the code fails with an exception
or assertion error. An often effective way to randomly test functional correctness is to test whether
the behavior of the code matches that of a simple reference implementation on which the same
operations are performed. For example, you could use the java.util libraries to build simple
reference implementations for the abstractions.

We expect you to use random testing on at least one abstraction you develop in this assignment.
JUnit has some support for random testing in its Theories module, but use of this feature of JUnit
is optional.

7 Submission

You should compress exactly these files into a zip file that you will then submit on CMS:

• Source code: Because this assignment is more open than the last, you should include all source
code required to compile and run the project. All source code should be located in the src/
directory.

• Tests: You should include code for all your test cases, in a clearly marked directory separate
from the rest of your source code.

• README.txt: This file should contain your name, your NetID, all known issues you have with
your submitted code, and the names of anyone you have discussed the homework with. In addi-
tion, you should briefly describe and justify your design, noting any interesting design decisions
you encountered, and briefly discuss your testing strategy.

• Solution.txt: Include the solution to the written problem.

• perf.txt or perf.pdf: This file should include your analysis of performance.

CS 2112 Spring 2014 5/8 Assignment 3

https://github.com/junit-team/junit/wiki/Theories

Do not include any files ending in .class.
All .java files should compile and conform to the prototypes we gave you. We write our own

classes that use your classes’ public methods to test your code. Even if you do not use a method
we require, you should still implement it for our use. You may add your own additional methods.

8 Written Problem

The standard Java interface SortedSet describes a set whose elements have an ordering. Ab-
stractly, the set keeps its elements in sorted order. Here is a simplified version of the interface:

/** A set of unique elements kept sorted in ascending order. */

interface SortedSet<T extends Comparable<T>> {

/** Add x to the set if it is not already there. */

void add(T x);

/** Tests whether x is in the set. */

boolean contains(T x);

/** Remove element x. */

void remove(T x);

/** Return the first element in the set. */

T first();

}

8.1 Part 1

The specification of remove has at least one serious problem. Clearly identify a problem and write
a better specification. You may change the signature if you justify it. (Note: We are not considering
a failure to produce nice javadoc a serious problem here.)

8.2 Part 2

Suppose we want a different implementation UnsortedList that is just like SortedList except
that it has no data structure invariant. But it should still implement the SortedSet interface.
Implement the add and first methods as concisely as you can. (Hint: It should be easier to
implement add since there is no invariant to maintain.)

9 Karma

questions do not affect your raw score for any assignment. They are given as interesting
problems that present a challenge.

CS 2112 Spring 2014 6/8 Assignment 3

9.1 Skip Lists

A skip list is an interesting data structure which supports quickly searching through a collection
of ordered elements. It is represented as a hierarchy of linked lists in which each linked list holds
a subset of the elements of its predecessors. Fast lookup is achieved by using the linked lists on
higher levels as express lanes which bypass many of the elements in lower lists thus decreasing the
time it takes to find a value in the sorted list at the lowest level. One challenge in designing the
skip list is determining which linked lists should contain a given value. We will use a randomized
approach presented in the section on Inserting below. An example of a skip list is displayed below
and it’s operations are addressed in further detail. A great resource for really understanding skip
lists can be found here: http://www.youtube.com/watch?v=kBwUoWpeH Q Watching this video
before diving into an implementation will make your job substantially easier!

9.1.1 Initialization

When a skip list is created, 1 or more linked lists are created. We do not need to worry about
the exact number of initial linked lists as this number will grow as our skip list increases in size
(described in the Inserting section). The first element in each of these linked lists should hold a
value that is smaller than any element that will be stored in the skip list. Since we are writing
generic code and do not know the type of the elements in our skip list, it is best to have the user of
the skip list provide an element that is smaller than any other element that could be placed in the
skip list. This will ensure that all element lookups will only move down and to the right.

9.1.2 Lookup

The search for an element x begins at the head of the highest list in the collection of linked lists
(upper left in the diagram above). This list is traversed to the right until there are no further
elements in the list or until the value at the next location is greater than x. At this point a pointer
is followed from the current node to it’s equivalent in the list one level down where the process
continues. Looking up the value 6 in the list above would yield the traversal 13 → 12 → 42 → 62
where xy represents the node containing value x on level y. We say that the lowest list is on level
0. This traversal takes 3 steps instead of the 5 steps that would be required if only the linked list
on level 0 was traversed.

9.1.3 Inserting

To insert an element x into the skip list, find the pair of consecutive nodes n1, n2 on level 0 such
that the value at n1 is less than or equal to x and the value at n2 is greater than or equal to x. Create

CS 2112 Spring 2014 7/8 Assignment 3

http://www.youtube.com/watch?v=kBwUoWpeH_Q

a new node containing x and insert it into the list at level 0 between n1 and n2. Now we must
decide whether this element should also be included in the list at level 1. We now flip a coin, if
heads, we will insert x in the list at level 1 otherwise we will leave it only at level 0. This process
continues with x moving up to the next level with probability 0.5 until a tails is flipped. If x was
just inserted in the linked list with maximum level and a heads is flipped, create a new list with
level max+ 1 that now contains only x.

9.1.4 Deleting

To delete an element x from the skip list, find a node containing x on level 0 and remove it from the
linked list. Then remove all nodes immediately above the node containing x from their respective
linked lists.

:

9.2 Cuckoo Hashing

Cuckoo hashing is an interesting alternative to chaining when implementing a hash table. Under
Cuckoo hashing, two (or more) hash functions are used instead of one and collisions are resolved
by switching the current hash function.

9.2.1 Collisions

Assuming a hash table T and a pair of hash functions f1 and f2, insertion of an element x works
as follows. Compute f1(x). If T [f1(x)] is empty then x is placed at that location and the algo-
rithm terminates. If T [f1(x)] is inhabited by some element y, then x is placed at that location
and the newly displaced y is re-inserted using the hash function f2. This process continues as
T [f2(y)] may be inhabited as well. A risk with cuckoo hashing is that this process could enter
a cycle such as T [f2(T [f2(y)]) = y. In this case, the table is resized and all elements in it are
rehashed. Further information about Cuckoo hashing can be found in this paper (http://www.it-
c.dk/people/pagh/papers/cuckoo-undergrad.pdf).

:

CS 2112 Spring 2014 8/8 Assignment 3

	Instructions
	Grading
	Partners
	Restrictions

	Hash Tables
	Overview
	Collisions

	Implementation Requirements

	Prefix Trees
	Overview
	Implementation Requirements

	Bloom Filters
	An Example of a False Positive
	Implementation Requirements

	Web Filter
	Performance
	Testing
	Submission
	Written Problem
	Part 1
	Part 2

	Karma
	Skip Lists
	Initialization
	Lookup
	Inserting
	Deleting

	Cuckoo Hashing
	Collisions

