
CS2112—Fall 2014
Assignment 6

Graphical User Interface Design
Due: Thursday, November 13, 11:59pm

Design overview due: Wednesday, November 5, 11:59pm

In this assignment you will use the JavaFX API to build a graphical visualization of the critter
world described in the project specification. This visualization will have a graphical user interface
that permits you to advance time in the world simulation and also to more closely inspect one
critter.

The majority of the grades for this assignment will be for new functionality. However, in addi-
tion to implementing new functionality, you are expected to fix bugs in your code as necessary to
ensure that the functionality implemented for Assignment 5 works correctly.

0 Changes

• None yet; watch this space.

1 Instructions

1.1 Grading

Solutions will be graded on design, correctness, and style. A good design makes the implementa-
tion easy to understand and maximizes code sharing. A correct program compiles without errors or
warnings, and behaves according the requirements given here. A program with good style is clear,
concise, and easy to read.

A few suggestions regarding good style may be helpful. You should use brief but mnemonic
variable names and proper indentation. Keep your code within an 80-character width. Methods
should be accompanied by Javadoc-compliant specifications, and class invariants should be docu-
mented. Other comments may be included to explain nonobvious implementation details.

We will evaluate your user interface on multiple grounds. The visual appearance and layout
will be factors, as will the design of the controls. We are looking for an attractive and functional
user interface, but we have specified neither its precise appearance and layout, nor exactly how the
UI will allow the user to control the system. This is deliberate; we would like you to think through
the design. A good idea is to storyboard and also to experiment with more than one UI design. See
what works best. Do not get locked into design decisions too early in the process.

1.2 Final project

This assignment is the third part of the final project for the course. Read the Project Specification to
find out more about the final project and the language you will be working with in this assignment.

CS2112 Fall 2014 1/6 Assignment 6

http://www.cs.cornell.edu/courses/cs2112//2014fa/hw/a5/a5.pdf
http://www.cs.cornell.edu/courses/cs2112/2014fa/project/project.pdf

1.3 Partners

You will work in a group of two students for this assignment. This should be the same group as in
the last assignment.

Remember that the course staff is happy to help with problems you run into. Read all Piazza
posts and ask questions that have not been addressed, attend office hours, or set up meetings with
any course staff member for help.

1.4 Restrictions

Use of any standard Java libraries from the Java 7 SDK is permitted. If there is a third-party library
you would like to use, please post to Piazza to receive a confirmation before using it. You may
code the UI in JavaFX’s XML, use a GUI builder, or hand-code your GUI. There is no restriction
on design tools.

2 Design overview document

We require that you submit an early draft of your design overview document before the assignment
due date. The Overview Document Specification outlines our expectations. Your design and testing
strategy might not be complete at that point, but we would like to see your progress. This is also
a good time to submit design sketches for the UI. Feedback on this draft will be given as soon as
possible.

3 Version control

As in the last assignment, you must submit file log.txt that lists your commit history from your
group.

Additionally, you must submit a file showing differences for changes you have made to files
you submitted in Assignment 5. Version control systems already provide this functionality.

4 Requirements

Your program should be able to display the current state of the world. To initialize, the simulation
should load the world files as done in Assignment 5. The critters will be controlled by programs
using the simulation engine you have already built.

The user interface must allow the user to step the world state one time step at a time, or to
start the world running continuously. In either case, the graphical display will be updated as the
simulation progresses to show the new state of the world.

The total number of time steps taken must be displayed on the user interface, along with the
total number of critters alive in the world. As in Assignment 5, the user should be able to create a
new random world, load a world, or load a specified number of critters.

CS2112 Fall 2014 2/6 Assignment 6

http://www.cs.cornell.edu/courses/cs2112/2014fa/hw/overview-requirements.html

When loading a critter program file, the user should be able to either specify a number of
critters to be randomly placed throughout the world or to select a particular hex in which to place
a critter.

The user should be able to set the maximum rate at which the simulation advances (including
0). Regardless of how quickly the simulation is progressing, the graphical display should not be
updated more often than 30 times per second. Thus, if the simulation is progressing very rapidly,
the world state may not be displayed for some time steps.

Another part of the user interface will allow the user to inspect a single critter somewhere in
the world. The user can click on the hex containing a critter to make it the currently displayed
critter. The user interface will indicate which critter is currently displayed and will also display the
state of the selected critter, corresponding to the 8 initial memory locations, along with the critter
program and information about the most recently executed rule. As the simulation progresses, this
information will be updated accordingly.

For more details about how the simulation of critters and other parts of the world work, consult
the Project Specification.

5 Bootstrapping the graphical user interface

Your program must support the following command-line interface:

• java -jar <your jar>
Start the simulation with a world populated by randomly placed rocks. The program should
automatically read the input file constants.txt and set the value of the various simulation
parameters accordingly.

Note that there are no command line options. All user interaction should be done through the
graphical user interface.

6 Written problems

Consider the following immutable data abstraction:
1 /** A TVBool is an immutable three-valued model of boolean algebra.

2 * A value is either true, false, or unknown, where unknown represents

3 * either true or false.

4 * Note: unknown ∧ unknown = unknown ∨ unknown = unknown

5 * true ∧ x = x = false ∨ x

6 * false ∧ x = false

7 * true ∨ x = true

8 */

9 public class TVBool {
10 /* Represents: true if positive, false if negative, unknown if zero. */

11 int state;

12

13 /** Creates: the unknown value */

14 public TVBool() { }
15 /** Creates: an object representing the same boolean as b. */

CS2112 Fall 2014 3/6 Assignment 6

http://www.cs.cornell.edu/courses/cs2112//2014fa/project/constants.txt

16 TVBool(boolean b) {
17 state = b ? 1 : -1;

18 }

19

20 /** Effects: none */

21 public void normalize() {
22 // Ensures state is one of -1, 0, or 1.

23 if (state > 1) state = 1;
24 else if (state < -1) state = -1;
25 }

26 /** Returns: conjunction of this and that (this ∧ that). */

27 public TVBool and(TVBool that) {
28 TVBool result = new TVBool();
29 result.state = Math.min(this.state, that.state);
30 return result;
31 }

32 /** Returns: disjunction of this and that (this ∨ that). */

33 public TVBool or(TVBool that) { ... }
34 /** Returns: logical negation of this. */

35 public TVBool not() {
36 TVBool result = new TVBool();
37 result.state = -state;

38 return result;
39 }

40

41 private String[] names = {"false", "unknown", "true" };
42 @Override

43 public String toString() {
44 normalize();

45 return names[state+1];
46 }

47 @Override

48 public int hashCode() {
49 return state;
50 }

51 @Override

52 public boolean equals(Object o) { ... }
53 }

1. Give a concise implementation of or().

2. The overview says that the data abstraction is immutable, so it is perhaps surprising that the
normalize() and not() methods assigns to the instance variable state. Explain in 3–4 sen-
tences why these two methods are in fact implemented correctly despite these changes to the
representation of the object.

3. The hashCode() method is incorrect. Explain what can go wrong with this definition of the
method, and provide a correct implementation of hashCode() and equals().

CS2112 Fall 2014 4/6 Assignment 6

7 Overview of tasks

Determine with your partner how to break up the work involved in this assignment. Here is a list
of the major tasks involved:

• Implementing new components to display the state of the critter world. This will involves graphi-
cally rendering hexes and critters. It should be possible, at least, to distinguish critters of different
species (as defined by the program), and to see the size and direction of a critter.
• Connecting the simulation engine from Assignment 5 to the display. This means allowing the

display both to update as the simulation progresses, and to stop, start, and step the simulation.
• Implement the loading of critter and world files, including placing critters into an existing world.
• Solving the written problems.

8

questions do not affect your raw score for any assignment. They are given as interesting
problems that present a challenge.

8.1 Extensions to the final project

Possible extensions include but are not limited to the following:

• Add a user interface that allows a user to control the selected critter and decide what moves
it performs on each turn. A good way to start this is by storyboarding the user interface with
sketches that show how the different components will be placed on the screen. Remember, not
all components must be visible at all times.

:

9 Tips

Take care not to entangle your model with this new interface, as proper separation of the simulation
and UI is part of your grade The model should not depend on the user interface in any way because
such a dependency will prevent a distributed implementation of the simulation in Assignment 7.
We will also be looking for good documentation of your classes and their methods, using the
documentation methodology described in class.

GUI code often becomes quite long and you will likely have to make a more conscious effort
to keep your code clean and readable than in previous assignments. In addition to organizing your
classes in packages, think about how you will organize your external resources (constants file and
any other files you add). Make sure your resources load properly if the project’s location changes.

10 Submission

You should submit these items on CMS:

CS2112 Fall 2014 5/6 Assignment 6

• overview.txt/pdf: Your final design overview for the assignment. It should also include de-
scriptions of any extensions you implemented and of any problems you attempted. Addi-
tionally, you should document the different aspects of your GUI. Do not assume that all observ-
able features of your GUI are observable to a new user. You should also indicate the operating
system and the version of Java you use.
• A zip file containing these items:

– Source code: You should include all source code required to compile and run the project. All
source code should reside in the src directory with an appropriate package structure.

– Other Files: You should include all other files needed for your project. For example, you
might use image files or other data files to control appearance. Be sure to include these.

Do not include any files ending in .class. Git users: to save space, exclude the hidden .git
folder when zipping.
• screenshots.pdf: A PDF file containing 3–4 pages of screenshots showcasing the GUI.
• log.txt: A dump of your commit log from the version control system of your choice.
• a6.diff: A text file showing diff of changes to files that were submitted in the last assignment,

obtained from the version control system.
• written problems.txt/pdf: This file should include your response to the written problems.

CS2112 Fall 2014 6/6 Assignment 6

	Changes
	Instructions
	Grading
	Final project
	Partners
	Restrictions

	Design overview document
	Version control
	Requirements
	Bootstrapping the graphical user interface
	Written problems
	Overview of tasks
	Karma
	Extensions to the final project

	Tips
	Submission

