CS2112—Fall 2014
Assignment 5
Interpretation and Simulation
Due: Thursday, October 30, 11:59pm
Design Overview due: Wednesday, October 22, 11:59pm

This assignment requires you to implement an interpreter for the simple language introduced
in the last assignment, a simulator that maintains a state of the execution environment and emulates
the execution of programs, and a console interface for controlling the simulation and querying the
state of the execution environment.

In addition to implementing new functionality, you are expected to make sure that the function-
ality implemented for Assignment 4 works correctly. This may require fixing bugs in your code.
The majority of the grades in this assignment will be on the new functionality, however.

0 Changes

e Example world printout updated so it is a correct world per the spec. (10/26)

1 Instructions
1.1 Grading

Solutions will be graded on design, correctness, and style. A good design makes the implementa-
tion easy to understand and maximizes code sharing. A correct program compiles without errors or
warnings, and behaves according the requirements given here. A program with good style is clear,
concise, and easy to read.

A few suggestions regarding good style may be helpful. You should use brief but mnemonic
variable names and proper indentation. Keep your code within an 80-character width. Methods
should be accompanied by Javadoc-compliant specifications, and class invariants should be docu-
mented. Other comments may be included to explain nonobvious implementation details.

1.2 Final project
This assignment is the second part of the final project for the course. Read the Project Specifi-

cation to find out more about the final project and the language you will be working with in this
assignment.

1.3 Partners

You will work in a group of two students for this assignment. This should be the same group as in
the last assignment.

CS2112 Fall 2014 1/9 Assignment 5

http://www.cs.cornell.edu/courses/cs2112//2014fa/hw/a4/a4.pdf
http://www.cs.cornell.edu/courses/cs2112/2014fa/project/project.pdf
http://www.cs.cornell.edu/courses/cs2112/2014fa/project/project.pdf

Remember that the course staff is happy to help with problems you run into. Read all Piazza
posts and ask questions that have not been addressed, attend office hours, or set up meetings with
any course staff member for help.

1.4 Restrictions

Use of any standard Java libraries from the Java SDK is permitted. Use of a parser generator (e.g.,
CUP) is prohibited, however.

2 Design overview document

We require that you submit an early draft of your design overview document in advance before
the assignment due date. The Overview Document Specification outlines our expectations. Your
design and testing strategy might not be complete at that point, but we would like to see your
progress. Feedback on this draft will be given within 72 hours after the overview is due.

3 Version control

As in the last assignment, you must submit file 1og. txt that lists your commit history from your
group.

4 Interpretation

The core of this assignment is implementing an interpreter for critter programs. An interpreter is
a program that emulates the execution of programs written in some programming language. For
example, the Java run-time system includes a bytecode interpreter that executes “bytecode” from
Java class files. (As a Java program runs, frequently-run code is converted on the fly to machine
code that the processor understands directly and can run faster.)

Your interpreter will work directly on the AST generated by the parser from Assignment 4.
It will interpret the rules by recursively evaluating the AST nodes representing conditions and
expressions, in the context of the current state of the critter and the state of the world, the execution
environment. The interpreter executes rules until an action is taken. It also updates the critter’s
memory as described by the rules applied.

4.1 Loading new critters
To add a new critter to the world, the critter’s initial state and rule set is read from a critter file. Each

critter file begins with a line specifying the name of the critter’s species, followed by a specification
of some of the first few memory locations:

CS2112 Fall 2014 2/9 Assignment 5

http://www.cs.cornell.edu/courses/cs2112/2014fa/hw/overview-requirements.html

species: (species name)
memsize: (memory size)
defense: (defensive ability)
offense: (offensive ability)
size: (size)

energy: (energy)

posture: (posture)

The species name is a string. It is recorded as an attribute of critters but is not otherwise used for
this assignment; it has no effect on the critter simulation. Each of the other values specified in angle
brackets is a nonnegative integer. You can assume the attributes appear in the specified order, but
you may choose to be more flexible.

Following the initial state in the critter file are the critter rules, in the syntax described in the
Project Specification. An example of a critter file is given in the example directory.

Reading critter files requires integration with your parser from Assignment 4. In addition to
specifying a critter file to load, the user should be able to specify the number of such critters to be
added to the world. These critters are placed at randomly chosen legal positions in the world: that
is, not on top of a rock, food, or other critter.

4.2 Interpreting critter rules

You will need to implement the recursive algorithm described in the project specification to decide
which action to take using the evaluated AST. You will also need to use your AST mutation code
from the last assignment to implement mating and budding.

An implementation of the AST and the parser is provided with this assignment. You are not
required to use it, but if you do, you are allowed to make changes, and you will have to provide
your own mutation code to avoid a small penalty. Therefore, we recommend that you use our
implementation as a guide to help fix your own code rather than as a replacement.

5 Simulation

A simulator keeps track of the state of the world and all the critters within. Your simulator will
load the initial state of the world from a file.

5.1 Loading world definitions

The initial state of the world is given in a world file, which may contain blank lines and lines
beginning with //, indicating comments. These lines should be ignored. The world file description
below assumes no existence of such lines.

The first two lines of the world file has the following format:

name (world name)
size (columns) (rows)

CS2112 Fall 2014 3/9 Assignment 5

The world name parameter specifies the name of the world, which should be printed out when the
world is loaded. The columns and rows parameters specify the number of columns and rows in
the world. Every subsequent line must have one of the following two forms, which specify where
to place a rock or a critter:

1. rock {(column) {(row)
2. critter (critter_file) (column) {row) {(direction)

You are not required to check for objects being placed on the same hex or on hexes outside of the
world, although you are encouraged to do so.

An example world file is given in world. txt.

5.2 Simulating the world

You will need to implement a model that keeps track of the state of the world: its dimensions and
contents, critters and their states, etc., as described in the Project Specification. The world will be
able to advance time steps, updating the state of the world and allowing each critter to execute the
rule set in each time step.

6 User interface

A skeleton of the console interface is provided. You should implement the interface to support the
following commands:

e new
Start a new simulation with a world populated by randomly placed rocks. Your world initializer
should automatically read the file constants. txt to determine the world parameters.

e load (world_file)

Start a new simulation with the world specified in file (world file). Your world initializer
should read critter files associated with any critters specified in (world file). Finally, your
world initializer should automatically read the file constants. txt to determine the world pa-
rameters.

e critters (critter_file) (n)

Read the critter file (critter_file) and randomly place n such critters into the world.

e step (n)

Advance the world for n time steps.

e info
Print the number of time steps elapsed, the number of critters alive in the world, and an “ASCII
art” map of the world. The hex contents displayed in the map should follow these notations:

- for an empty space
for a rock

d for a critter facing in direction d
F for food.

CS2112 Fall 2014 4/9 Assignment 5

N QY L AW N~

F - - (0,4 (2,5) (4,6) (6,7)
(1,4 (3,5 (5,6)

- - - # (0,3 2,4 4,5 (6,6)
(1,3 (3,4 (5,5)

-1 - - (0,2) (2,3) 4,4 (6,5)
(1,2) 3,3 (5,4)

- - - 0,1 2,2 (4,3 (6,4
(1,1 (3,2 (5,3

- 5 - - 0,0 2,0 (4,2) (6,3)

(a) An ASClI-art map of the world (b) Coordinates in an ASCll-art map

Figure 1: The structure of ASCll-art maps

Figure 1(a) shows an example ASCII-art map. The columns of this map corresponds to the
columns of the world, and adjacent columns are staggered by one line. Figure 1(b) shows the
(column, row) coordinates corresponding to various positions on the example ASCII-art map.

e hex (column) (row)
Print a description of the contents of the hex at coordinate (column, row). If a critter is present,
print the following as a description of the critter:

its species
the contents of at least its first eight memory locations

its rule set, using the pretty-printer from Assignment 4

the last rule executed

If food is present, print the amount of food.

7 Written problems

Consider the following simple code for sorting an array, where swap(a, i, j) swaps array ele-
ments in the obvious way:

/%% Effects: Sort the elements of a into ascending order. */
void sort(int[] a) {
int n = a.length;
for (int i = 0; i < n-1; i++)
for (int j = i+1; j < n; j++)
if (a[i] > a[j]) swap(a, i, j);
}

1. How does the best- and worst-case asymptotic performance of sort compare to that of insertion
sort? Why would you expect sort to be slower in practice? Explain briefly.

2. How does the best- and worst-case asymptotic performance of sort compare to that of selection
sort? Why would you expect sort to be slower in practice? Explain briefly.

CS2112 Fall 2014 5/9 Assignment 5

3. Give a loop invariant for the outer loop of sort that is strong enough to show that the sorting
algorithm works correctly. Give a clear argument for each of the three aspects of partial cor-
rectness: establishment, preservation, and the postcondition. Remember that the preservation
argument can only rely on assumptions that are part of the loop invariant itself.

8 Overview of tasks

Determine with your partner how to break up the work involved in this assignment. Here is a list
of the major tasks involved:

e Implementing the recursive interpretation of critter programs.
e Implementing the state of the world and its critters.
e Implementing the console interface and its communication with your world model.

Developing a good test suite to ensure that the critter interpreter is implemented correctly.

Solving the written problems.

9 @oHaRMA

HARMaA questions do not affect your raw score for any assignment. They are given as interesting
problems that present a challenge.

9.1 Extensions to the final project

Possible extensions include but are not limited to the following:

e Add support for selecting and directly controlling a critter.
HaRMa:
e How fast can you make the critter interpreter run? Think about ways to avoid unnecessary com-

putation.
HaRMa:

9.2 Postfix calculator

Tired of parsing parentheses and throwing them away? Can we avoid parentheses? Without them
and without operator precedences, the usual way of writing down arithmetic expressions becomes
ambiguous. This usual way is known as the infix notation, where each binary operator is between
its two operands.

As we learned from Assignment 4, abstract syntax trees eliminate the need for parentheses. For
example, Figure 2 shows the abstract syntax tree for (2+3) *4. Still, pretty-printing this AST us-
ing inorder traversal requires reinserting parentheses at appropriate places. If postorder traversal is
used instead, we obtain the following output: 2 3 + 4 *. Pretty-printing using postorder traversal
gives us the postfix notation, as each operator appears after all its operands have appeared. Postfix

CS2112 Fall 2014 6/9 Assignment 5

+ 4
2 3
Figure 2: The AST for ((2+3)*4) in infix notation and for 2 3 + 4 * in postfix notation

expressions need no parentheses, and evaluating them is simple: whenever a binary operator is en-
countered, we must have evaluated its two operands, which are the results of the two most recent
evaluations that have not been used in some other evaluation. In our example, when + is encoun-
tered, we have seen 2 and 3 most recently, so the result of addition is 5. When * is encountered,
we have seen 5 and 4 most recently, so the result of multiplication is 20.

HP calculators are famous for using postfix; some widely used programming languages work
this way too, of which the best-known are FORTH and PostScript.

Implement the following method that evaluates a postfix expression:
/:i- *

* Evaluate the postfix expression given in a stream.

* @param is An InputStream containing an expression

* @return The result of evaluating the postfix expression

* @throws SyntaxError if the expression is malformed

si—/

public static int postfixInterpret(InputStream is) throws SyntaxError;

You should augment the above documentation to specify the behavior of the method in abnormal
conditions. You may assume that each number in a valid postfix expression is nonnegative, and
valid operators are addop and mulop in Section 5 of the Project Specification.

You may use the tokenizer, the parser, and the AST in your final project implementation to help
solve this problem.

Examples:

e 2 + 3 + 4throws a SyntaxError.

e 2 3 + 4 +returns 9.

e 2 3 4 + +returns 9.

e 2 3 4 * +returns 14.

e 2 3 + 4 *returns 20.

e 23+ 45 + *returns 45.

e 22222 2% * % % *returns 64.

e 12 *3*4* 5 * 6 * 7 *returns 5040.
HdaRMa:

CS2112 Fall 2014 7/9 Assignment 5

9.3 Josephus problem

The Josephus problem arose in the 1% century a.p.'. In July 67, Josephus, a Jewish historian,
was trapped with forty of his companions in a cave after the Romans invaded a Jewish garrison.
Declined to surrender to the Romans, the group committed a collective suicide using a method
suggested by Josephus: the group stood in a circle, and every third person was killed. Josephus
was the sole survivor of this process. He surrendered to the Roman forces and was later released.

It turns out that the original method was simple enough that Josephus was rumored to rig the
“game.” Henceforth, we will consider an extended version of the problem, where “every i person”
varies in each round of killing. For example, suppose there are four people in the circle. In the first
round of killing, the 5™ person is killed. In the second round of killing, the 6" person is killed. In
the third and final round of killing, the 7" person is killed. Using these rules, the game proceeds as
follows:

1. The first person starts counting. The first person is also the 5" person to count, so he is killed.

2. In the second round, the second person, who was next to the first person, continues counting.
He is also the 4" person to count. Now, the fourth person is the 6" person to count, so he is
killed.

3. In the third round, the second person, who was next to the fourth person, continues counting.
He is also the 3™, 5%, and 7™ person to count and hence killed. The third person is left standing
and is the winner of the game.

Implement the following method to determine the winner of the extended Josephus problem:
/:': *

* Determine the winner of the extended Josephus problem.
* @param n The number of people at the beginning of the game
* @param counts An array of length {@code n}-1, where {@code counts[i]} is a
* positive integer indicating the number of people to count
in round {@code i}+1 before a person is killed
* @return An integer between 1 and {@code n} indicating the last person
* standing
7".-/

public static int extendedJosephusSurvivor(int n, int[] counts);

What is the asymptotic running time of your algorithm? Include this in your method documenta-
tion.

Examples: In the following, the first number indicates n, and the numbers in [] indicate the content
of counts.

e 6, [1, 1, 1, 1, 1] returns®6.
e 5, [2, 2, 2, 2] returns 3.
4, [5, 6, 7] returns 3.
e 3, [333, 111] returns 2.
2, [2014] returns 1.

Note: This problem can be simulated to determine the survivor in O(n + C), where C is the sum of

"History taken from Wikipedia.

CS2112 Fall 2014 8/9 Assignment 5

https://en.wikipedia.org/wiki/Josephus

all the entries in counts. There is a faster way to solve this problem, and we are looking for such
a solution. Please do not submit the naive solution using simulation.

HdRMad:

10 Tips

Think carefully about how to divide this programming assignment up into modules that separate
concerns effectively. For example, can you keep the interpreter code largely separate from the rules
of the world simulation?

In the next assignment, the console interface will be replaced by a graphical user interface,
which will display similar information as the current interface. Consequently, if your world model
is properly decoupled from the user interface, your new interface can be built without changing the
world simulation. This is the beauty of the Model-View—Controller design pattern.

Testing the world simulation is difficult without a graphical representation. The main focus of
this assignment is, therefore, on correctly interpreting critter programs, rather than perfecting the
world simulation. Our grading scheme will reflect this priority. We recommend that you work with
small worlds and focus on testing individual critters’ actions.

It may be difficult to debug your implementation using only the output of the program as de-
fined in the specification. We recommend adding additional diagnostic functionality so that you
can see, for example, why each rule is chosen or not chosen during the evaluation. We also rec-
ommend developing unit tests for each language construct. For example, you want to be sure that
all the sensors produce the right values and all the actions do what they are supposed to. Testing
correctness fully might be challenging to achieve by only running the simulation, so think about
what other test harnesses would be helpful.

11 Submission

You should submit these items on CMS:

e overview.txt/pdf: Your final overview document for the assignment. It should also include
descriptions of any extensions you implemented and of any HdRMd problems you attempted.

e A zip file containing these items:

— Source code: You should include all source code required to compile and run the project. All
source code should reside in the src directory with an appropriate package structure.

— Tests: You should include code for all your test cases, in a package named tests, separate
from the rest of your source code. Subpackages are permitted.

Do not include any files ending in .class.
e log.txt: A dump of your commit log from the version control system of your choice.
e written problems.txt/pdf: This file should include your response to the written problems.

CS2112 Fall 2014 9/9 Assignment 5

	Changes
	Instructions
	Grading
	Final project
	Partners
	Restrictions

	Design overview document
	Version control
	Interpretation
	Loading new critters
	Interpreting critter rules

	Simulation
	Loading world definitions
	Simulating the world

	User interface
	Written problems
	Overview of tasks
	Karma
	Extensions to the final project
	Postfix calculator
	Josephus problem

	Tips
	Submission

