
CS2112—Fall 2014
Assignment 2

Ciphers and Encryption
Due: Tuesday, September 16, 11:59pm

Design Overview due: Monday, September 8, 11:59pm

In this assignment, you will build multiple systems for the encryption and decryption of text.
The first part focuses on simple ciphers and cipher cracking, while the second part explores the
widely used RSA public-key encryption algorithm, which you use multiple times a day. You are
tasked with creating a command-line application that can generate, save, and use the ciphers you
build. Your implementation of the system should use inheritance to share code between different
ciphers.

0 Updates

• Clarified requirements on handling large input. (9/5)
• Updated Main.java by inserting a break after line 151. (9/7)
• Modifications to Main.java are allowed, but not necessary (9/11)

1 Instructions

1.1 Grading

Solutions will be graded on both correctness and style. A correct program compiles without errors
or warnings, and behaves according the requirements given here. A program with good style is
clear, concise, and easy to read.

A few suggestions regarding good style may be helpful. You should use brief but mnemonic
variables names and proper indentation. Your code should include comments as necessary to ex-
plain how it works, but without explaining things that are obvious.

1.2 Partners

You must work alone for this assignment. But remember that the course staff is happy to help with
problems you run into. Use Piazza for questions, attend office hours, or set up meetings with any
course staff member for help.

1.3 Documentation

For this assignment, we ask that you document all of your methods with Javadoc-style comments.
How to write Javadocs will be covered in lab, and the course staff will be able to answer any
questions during office hours.

CS2112 Fall 2014 1/15 Assignment 2

Animal 〈〈AbstractClass〉〉 Winged 〈〈Interface〉〉

Dog 〈〈Class〉〉 Bird 〈〈Class〉〉

Figure 1: An example of a class diagram. Dog, which is a class, extends Animal, which is an abstract
class. Bird, which is a class, extends Animal and implements Winged, which is an interface.

1.4 Provided interfaces

You must implement all methods provided, even if you do not use them. You may not change the
signature and return type of any provided method. Formal parameters may be renamed, however,
but this is discouraged. You may also add throws declarations to methods if you believe they
improve your design. You may (and are encouraged to) add as many additional methods as you
need.

2 Design overview document

Many components of this assignment share common functionality. For example, many ciphers
need to read input both from the command line and from files. A program that implements input
reading once in a common place and allows each cipher to use this functionality is better than one
having such code duplicated for each cipher. A clean and readable program exploits inheritance
that collects common code among individual components into a single place.

To ensure that your design is reasonable for this assignment, we require that you submit a
design overview document before the assignment is due. A design document should contain a
diagram of the class hierarchy you are planning to implement, along with a short paragraph briefly
justifying your design decisions. When designing the class hierarchy, consider factoring out shared
functionality between the implementation of multiple ciphers to eliminate duplicate code. Figure 1
shows an example of a class diagram that you can use as a guide.

Submit your design overview document as a PDF file named a2 designOverview.pdf. Scans
of handwritten diagrams are acceptable.

3 Monoalphabetic and transposition ciphers

3.1 Overview

A cipher is a way to protect a message by changing its letters or characters so that only the desired
recipient(s) can read it. The original message is called the plaintext, and the transformed message
is called the ciphertext. Monoalphabetic ciphers provide what is perhaps the most rudimentary

CS2112 Fall 2014 2/15 Assignment 2

encryption, as they create a one-to-one correspondence between letters in the plaintext and letters
in the ciphertext.

3.1.1 The Caesar cipher

The Caesar cipher is a monoalphabetic cipher that functions by mapping an alphabet to a ‘shifted’
version of itself. For example, a cipher where each letter is shifted to the right by one (A → B, B
→ C, . . . , Z → A) would encrypt the message CAT as DBU. We say that the above Caesar cipher
has a shift parameter of 1. A shift parameter of 0 results in the original alphabet. Shift parameters
are not limited to values 1–26; they can be any integer, including negative numbers. A shift of −1
maps A → Z, B → A, and so on.

3.1.2 Random substitution cipher

The Caesar cipher is a special case of a monoalphabetic substitution cipher, a cipher that consis-
tently replaces individual plaintext symbols with corresponding ciphertext symbols. With a Caesar
cipher, the shift parameter can be learned from knowing how a single symbol was encrypted, de-
termining the entire mapping. A substitution cipher is harder to break if the mapping between
plaintext and ciphertext symbols is random. In this case, knowing how any one symbol is mapped
by the cipher gives very little information about how other symbols are mapped.

Note that random number generators used in computing are almost never truly random, but
rather pseudorandom. They are produced by an algorithm called a pseudorandom number gener-
ator (PRNG) whose output is difficult to distinguish from true random numbers. A cryptographic
random number generator is a random number generator for which practical algorithms are not
known that can distinguish their pseudorandomness from true randomness.

3.1.3 The Vigenère cipher

Another way to strengthen the Caesar cipher is to use different substitutions on different letters.
The Vigenère cipher1 was once considered to be unbreakable. Rather than using a uniform shift
for all letters, a repeating pattern of shifts is applied. Traditionally, the key is represented as a
word, with A representing a shift of 1, B a shift of 2, and so on. Encrypting CATALOG with key
ABC yields DCWBNRH, because the shifts ABCABCA are applied to the plaintext. The Vigenère cipher
makes frequency-based cryptanalysis more difficult, especially if the key is long, because even
if the same letter appears many times in the plaintext, it may appear in the ciphertext as many
different letters.

3.1.4 The route cipher

Another family of ciphers are transposition ciphers, in which the letters of a message are rearranged
in a systematic manner to form an anagram. One such cipher is called a route cipher. First, the

1The cipher was actually invented by an Italian cryptologist Giovan Battista Bellaso in 1553. Blaise de Vigenère, a
French cryptographer, created a different, stronger autokey cipher in 1586.

CS2112 Fall 2014 3/15 Assignment 2

https://en.wikipedia.org/wiki/Giovan_Battista_Bellaso
https://en.wikipedia.org/wiki/Blaise_de_Vigenere
https://en.wikipedia.org/wiki/Autokey_cipher

plaintext is written in a grid of predetermined dimensions. The ciphertext is then read off according
to a certain pattern. For this assignment, the pattern is to read down the columns going from left to
right. For example, the plaintext ABCDEFGHIJKLMNOP encrypted in a route cipher with a set width
of four characters is arranged as

ABCD

EFGH

IJKL

MNOP

And so the ciphertext reads AEIMBFJNCGKODHLP. Whitespace must be added to the end of the
block when the plaintext does not fit nicely in the prescribed dimensions. For example,

ABCD

EFGH

IJKL

MN

has two spaces added at the end of the fourth line to make everything fit nicely, and the ciphertext
reads AEIMBFJNCGK DHL .

3.2 Implementation

Your task is to implement Caesar cipher, random substitution cipher, Vigenère cipher, and route
cipher. Your cipher implementations will be accessed through class CipherFactory. Two inter-
faces EncryptionCipher and DecryptionCipher define necessary methods for encryption and
decryption. In addition to implementing these interfaces, your ciphers should extend abstract class
AbstractCipher.

We will be looking for elegant program design that minimizes the repetition of common code.
The best program is rarely one with the most lines of code, but rather one that accomplishes the
task most simply and with the least code. You will find inheritance a valuable language feature for
avoiding repetitions. Additional abstract classes may be useful to make your code shorter.

3.2.1 Letter encoding

A consistent standard is important for representing characters in both the encrypter and decrypter.
All letters should be converted to their uppercase equivalents. Whitespace—specifically, spaces,
tabs, and newlines—should be maintained. All other characters should be discarded. For example,
the sentence I really like Cornell, don’t you? would become the plaintext I REALLY

LIKE CORNELL DONT YOU. You may assume that when decrypting, the program will encounter
only uppercase letters and whitespace characters.

3.2.2 Saving the cipher

To save a Caesar or random substitution cipher to a file, simply print the encrypted alphabet to the
file, followed by a newline. For example, saving a Caesar cipher with shift parameter 1 creates a

CS2112 Fall 2014 4/15 Assignment 2

file whose content is as follows:
1 BCDEFGHIJKLMNOPQRSTUVWXYZA

2

To save a Vignère cipher, print the key to the file, followed by a newline. For example, a Vignère
cipher with the key KEY saves to a file that looks like

1 KEY

2

To save a route cipher, print the width of the grid to a file, followed by a newline. A route cipher
with grid width 4 saves to a file with content

1 4

2

4 Cipher cracking using frequency analysis

Monoalphabetic ciphers are easiest to break using frequency analysis. A cryptanalyst analyzes the
frequency of letters in the target language and in the encoded message. This information can be
used to reconstruct the cipher and decrypt the message.

4.1 Implementation

You should implement a tool to analyze the frequency of letters over multiple unencrypted texts in
the target language, and then use this analysis to crack messages encrypted with a Caesar cipher.
You should do so by completing the methods provided in class FrequencyAnalyzer. Like the
encrypter, FrequencyAnalyzer should keep track of only uppercase English letters and handle
other characters appropriately (convert or ignore). How you do this is up to you, but here is a hint:
there are only 26 possible Caesar ciphers. Find the one that best explains the frequencies of the
symbols seen in the ciphertext, under the assumption that the sample text provided contains letters
with frequencies typical of the plaintext (i.e., the frequencies found in English-language text). If
you are looking for large chunks of English text for testing you may find Project Gutenberg useful.

5 RSA encryption

RSA is probably the most widely used encryption schema in the world today. RSA is a public-key
cipher: anyone can encrypt messages using the public key; however, knowledge of the private key
is required in order to decrypt messages, and knowing the public key does not help crack the private
key. Public-key cryptography makes the secure Internet possible. Before public-key cryptography,
keys had to be carefully exchanged between people who wanted to communicate, often by non-
electronic means. Now RSA is routinely used to exchange keys without allowing anyone snooping
on the channel to understand what has been communicated.

RSA is believed to be very secure, based on the widely held assumption that no one has an
efficient algorithm for factoring large numbers; deriving the private key from the public key appears
to be as hard as factoring.

CS2112 Fall 2014 5/15 Assignment 2

http://www.gutenberg.org/

5.1 The algorithm

5.1.1 Key generation

1. Choose two random and distinct prime numbers p and q. These must be kept secret. The larger
p and q are, the stronger the encryption will be.

2. Compute n = p · q. This is the modulus used for encryption.
3. Compute φ(n), the totient of n. It is the number of positive integers less than n that are relatively

prime to it. For a product of two primes p and q, the totient is easy to compute: φ(n) = (p −
1)(q − 1). Notice that computing φ(n) requires knowledge of p and q.

4. Choose an integer e such that 1 < e < φ(n) and e is relatively prime to φ(n). That is, the greatest
common divisor of e and φ(n) is 1.

5. Compute the decryption key d as the multiplicative inverse of e modulo the totient, written as
e−1 mod φ(n). This is a value d such that 1 ≡ e · d mod φ(n). Such a value d can be found using
Euclid’s extended greatest-common-divisor algorithm.

The public key is the pair (n, e) and the private key is the pair (n, d).

5.1.2 Encryption

A plaintext message s is encrypted as ciphertext c via the following formula: c = se mod n. Note
that it can be done using only the publicly known n and e.

5.1.3 Decryption

An encrypted message c is decrypted as plaintext s via the following formula: s = cd mod n. Note
that this cannot be done with just the public key.

5.1.4 Why does this work?

If we encrypt and then decrypt a plaintext message s, we obtain a new message s′ = (se mod
n)d mod n. For the cryptosystem to work, we must have s = s′. It is not too hard to see that this is
true if we lean on one well-known result from number theory.

By the properties of modular arithmetic, we can pull the mod n to the outside: s′ = (se)d mod
n = sed mod n. Recall e and d are chosen to be multiplicative inverses modulo φ(n), so sed =

s1+kφ(n) = s·skφ(n) for some integer k. It turns out that the the sequence s0, s1, s2, s3, . . ., taken modulo
n, always repeats with period φ(n). Therefore sφ(n) ≡ s0 ≡ 1 mod n, so s · skφ(n) ≡ s ·(sφ(n))k ≡ s ·1k ≡

s mod n. Therefore sed ≡ s mod n, as desired.
For example, φ(10) = φ(2 · 5) = 1 · 4 = 4, and 34 = 81 ≡ 1 ≡ 2401 = 74 mod 10. In fact, we

can use 3 and 7 as e and d, since 3 · 7 = 21 ≡ 1 mod φ(10). Let’s try it out on the message 8. We
encrypt it as 83 = 512 ≡ 2 mod 10. Going back the other way, 27 = 128 ≡ 8 mod 10. It works!

CS2112 Fall 2014 6/15 Assignment 2

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

5.2 Implementation

5.2.1 Dealing with large numbers

RSA involves large numbers, so you should use class java.math.BigInteger for all arithmetic.
To generate large prime numbers, you should use the appropriate BigInteger constructor with
certainty = 20. The numbers generated by this constructor are only ‘probably’ prime, but given
a high enough certainty, this is good enough. You’ll want to choose a bit length (the bitlength
parameter) for p and q such that their product contains the right number of bits. Recall that the
product of two n-digit numbers contains at most 2n digits.

5.2.2 Message format and padding

Encryption The most challenging part of implementing RSA is not the arithmetic (at least with
the help of a class such as BigInteger). Rather, it is formatting the message so that it can be
correctly encrypted. The plaintext should be broken down into chunks of size 117 bytes by im-
plementing interface ChunkReader. The bits from the sequence of plaintext bytes should then be
used to construct the BigInteger object to which the RSA algorithm is applied, with the least sig-
nificant bits of the number as the first byte of each chunk. Note that we no longer need to convert
case or special characters, as we are using their underlying representations.

Since the input length is unlikely to be an even multiple of 117, it is necessary for each chunk to
keep track of the actual number of bytes of data contained in the chunk. This is done by extending
the chunk with a 118th byte containing the number of actual data bytes in the chunk (from 1 to
117). There are always 118 total bytes in the data that is converted to a BigInteger: up to 117
data bytes, plus one extra byte to keep track of the chunk size. If fewer than 117 data bytes are
available, padding bytes are inserted so that the size byte is still the 118th.

In general, encryption using the RSA algorithm can make the number larger. For this reason,
the numbers generated by encryption are converted back into 128-byte arrays that are written to the
output file, and the length of encrypted output is always a multiple of 128. The difference between
118 and 128 leaves plenty of room for the number to grow when it is encrypted, so encryption
never overflows the available space.

For stronger encryption, the padding bytes added to short chunks would be random bytes,
protecting against a dictionary attack. However, your program will be easier to debug if you set all
such bytes to zero, and we will accept such a solution.

When writing out an encryption result to a file, exactly the encrypted 128-byte chunks should
be written, not the textual representation of the number. Hint: Use OutputStream directly rather
than converting to a string and back.

It is strongly recommended that you test converting text and files to and from chunks without
any encryption before you try implementing the RSA algorithm itself. Doing this will help you
catch bugs while the number of possible causes is still small.
Example: Consider converting the plaintext string CS2112 into an appropriately formatted byte

array. A character is really a signed 16-bit integer, and takes up two bytes. Specifically, the charac-
ters have the following codes (note that 0x indicates a base-16 number):

CS2112 Fall 2014 7/15 Assignment 2

char Value
C 0x0043
S 0x0053
2 0x0032
1 0x0031

How these character codes are translated into an array of bytes depends on the encoding cho-
sen. With the default ISO-8859-1 encoding, only character codes 0x00–0xFF are supported, and
the byte array will be { 0x43, 0x53, 0x32, 0x31, 0x31, 0x32 }. With the UTF-8 encoding,
you’ll get the same sequence for this string, but characters above 0x7F will translate to multi-byte
sequences. The UCS-2 encoding will preserve give you 12 bytes of data and will not lose any
information. For this assignment, we recommend using the ISO-8859-1 encoding.

With 6 bytes of plaintext data, there will be 117 − 6 = 111 bytes of padding and the final byte
containing 6 to signify the size of the actual “payload.”

When interacting with data read from a file, the data should be handled directly as bytes, since
the data may not make sense as characters under any character encoding. You should be able to
encrypt .class files, for exapmle.

Appendix A contains an example showing expected results when encrypting and decrypting
with RSA.

Decryption Decryption is simply the inverse of encryption. The input is read in chunks of size
128, which are converted to BigIntegers and run backward through the transformation. The
117th byte in the decrypted result specifies how many bytes of data to extract from the array as
the decrypted output. Encrypting a file and then decrypting the result should give back exactly the
original file.

5.2.3 Saving the keys

The keys, like the cipher schema, can be saved to files.

Public Key When a public key is stored to a file, the file should contain the decimal represen-
tation of n, followed by a newline, followed by the decimal representation of e, and end with a
newline. That is, the file should look like this:

1 <n>

2 <e>

3

Private Key The storage of the private key is the same as the storage of the public key, except for
the addition of a third line containing d. More precisely, the file for a private key looks as follows:

1 <n>

2 <e>

3 <d>

4

CS2112 Fall 2014 8/15 Assignment 2

5.2.4 Additional requirement

Your implementation of the various ciphers should not crash when attempting to encrypt or decrypt
input larger than the Java heap. For large input files, you will not be able to bring the entire input
into memory at once.

5.3 Useful resources

• class BigInteger
• class String
• class Byte
• abstract class InputStream
• Wikipedia article on RSA
• Wikipedia article on Factory design pattern

For this assignment it may be helpful to know what is really stored in a file, especially if you
are having trouble with reading or writing to a file. Viewing a file using a text editor is not reliable
when you’re dealing with binary data. Suppose you have a file output.txt and you want to see
what’s in it.

On Linux and Mac, either of these commands will show you what’s there very clearly:
od -Ad -txC -tc output.txt

xxd output.txt

On Windows there are various “hex editors” that you can use. People seem to like HxD; hexedit
is also okay. Hex editors also exist for Linux/Mac, of course. There is also a plug-in called EHEP
for Eclipse that purports to provide hex editor support.

6 Command line invocation

We have provided a command-line interface which allows users to interact with the code that you
write in this assignment. It is included in the file Main.java. You are encouraged to read through
and understand this code. You may also modify this code, but modifications are not required for
this assignment. The user may provide any of the following commands via the console:

java -jar <YOUR JAR> <CIPHER TYPE> <CIPHER FUNCTION> <OUTPUT OPTIONS>

or

java -cp <CLASS FILE DIR> Main.java

<CIPHER TYPE> <CIPHER FUNCTION> <OUTPUT OPTIONS>

Cipher type There are three different cipher types that we have asked you to implement, and the
flags for each of them are as follows.

CS2112 Fall 2014 9/15 Assignment 2

http://docs.oracle.com/javase/7/docs/api/java/math/BigInteger.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Byte.html
http://docs.oracle.com/javase/7/docs/api/java/io/InputStream.html
http://en.wikipedia.org/wiki/RSA_(algorithm)
http://en.wikipedia.org/wiki/Factory_(object-oriented_programming)

• --monosub <cipher file>: A monoalphabetic substitution cipher is loaded from the file
specified.
• --caesar <shift param>: A Caesar cipher with the given shift parameter is used for these

operations.
• --random: A monoalphabetic substitution cipher is randomly generated and used by this pro-

gram.
• --crackedCaesar [-t <examples> | -c <encrypted>]: A Caesar cipher is constructed

using frequency analysis with the files flagged -t listed in examples as the unencrypted language
and files tagged -c as the encrypted language. A user may provide any number of -t and -c

flags, and in any order.
• --vigenere <key>: Creates a Vigenère cipher using the given keyword (given as a string, max

length 128 characters)
• --vigenereL <cipher file>: Loads a Vigenère cipher from the given file.
• --route <width>: Creates a route cipher with the width given as an integer.
• --rsa: Creates a new RSA cipher.
• --rsaPr <file>: Creates an RSA encrypter/decrypter from the private key stored in the spec-

ified file.
• --rsaPu <file>: Creates an RSA (encrypter) from the public key stored in the specified file.

Cipher functions Next, at most one of the following options may also be specified by the user.

• --em <message>: Encrypts the given message.
• --ef <file>: Encrypts the provided file using the specified cipher scheme.
• --dm <message>: Decrypts the given message.
• --df <file>: Decrypts the provided file using the specified cipher scheme.

Output options Finally, the user may add as many output flags as they wish.

• --print: Prints the result of applying the cipher (if any) to the console.
• --out <file>: Prints the result of applying the cipher (if any) to the specified file.
• --save <file>: Saves the current cipher to the provided file (if the current cipher is RSA, this

saves the private key).
• --savePu <file>: If the current cipher is RSA, this saves the public key to the given file.

6.1 Examples

• Make a new Caesar cipher with shift parameter 15, apply it to the provided message, output the
result to file encr.txt, and save the cipher to file ca15:

java -jar <your jar> --caesar 15 --em ’ENCrypt Me!’

--out encr.txt --save ca15

• Load the cipher from ca15, decrypt the message in encr.txt, and print the result to the console:

java -jar <your jar> --monosub ca15 --df encr.txt --print

CS2112 Fall 2014 10/15 Assignment 2

• Create a frequency analyzer using 3 English texts and 1 encrypted text. Use the resulting cipher
to decrypt the encrypted text, print the result, and save the cipher:

java -jar <your jar> --crackedCaesar -t moby-dick.txt -c mystery.txt

-t frankenstein.txt -t macbeth.txt --df mystery.txt

--save brokenCiph --print

• Create an RSA encrypter, encrypt the given message, save the ciphertext to a file, and save the
two keys to different files:

java -jar <your jar> --rsa --em ’rsa is alright, i guess’

--out encr.txt --save priv.pr --savePu pub.pu

• Load an RSA private key, decrypt a message, print the resulting plaintext, and also save it to a
file:

java -jar <your jar> --rsaPr --df encr.txt --out decr.txt --print

6.2 Errors

Should anything go wrong during execution, including user-error (malformed requests, missing
files), your program should not simply ’die’. For example, if a user attempts to execute two incom-
patible actions such as

java -jar <your jar> --random --savePu outfile.pu

a reasonable warning should be printed to the console (System.out). Also, no Java exception
should ever be shown to the user. Instead, your program should detect the error and find a sensible
way to resolve or communicate the problem.

7 Advice

This assignment involves writing much more code than Assignment 1 required, and demands more
careful design. Par for this assignment is about 900 lines of code, assuming you design a reasonable
class hierarchy that allows effective code reuse.

It can also a challenging debugging exercise if you make mistakes, especially for the RSA
cipher. Think carefully about the code you are writing and to convince yourself that it is correct.
You will also need to test your code carefully. Try not only “normal” inputs but also corner cases.

7.1 Start early

You should start on this assignment as early as possible. It will require careful thoughts about your
design to use object-oriented programming methodology in the most effective way. Trying to do it
all at the last minute is nearly certain to result in code that is both messy and broken.

CS2112 Fall 2014 11/15 Assignment 2

7.2 Use assertions

Getting RSA to work can be the most challenging part of the assignment if you are not careful
of design, testing, and debugging. Much of the problem comes from small issues when chunking
bytes, padding, and converting to and from BigInteger objects. If a bug is propagated through
the encryption process, it becomes infeasible to tell where the problem is.

We strongly recommend using assertions at each step to help pinpoint bugs. You can use as-
sertions to confirm things like the length of your chunks, the fact the values do not change when
converted to and from a BigInteger object without encryption, and other properties that you ex-
pect to be true. If there are complicated things you would like to check, write extra methods to
check them and call those methods from an assertion.

Enabling assertions By default, assertions are disabled. This is done so that programmers can
use computationally expensive assertions without hurting the performance of production code. To
enable assertion checking, the program must be run with the -ea flag. This flag can be passed as
a VM argument in the Run Configuration. Check out this stackoverflow post for help. The Oracle
guide on how to use assertions may also be a helpful resource.

7.3 Build and test incrementally

When building large programs, it is helpful to test your code as you go. Continuous testing in-
creases the chance that any new bugs that show up are the result of code you wrote recently. Ideally,
at every point during development, you have some incomplete (but correct) code that offers a firm
foundation for further work.

Think about how to develop your code in an order that allows you to test it as you go. Assertions
that check preconditions and class invariants are helpful ways to test your code as you develop it.

It is also helpful to design your test cases ahead of time. A good set of test cases will make
incremental testing much more effective. A good set of test cases will actually help you pinpoint
the key issues your code has to deal with before you even write the code.

7.4 Read specs carefully

The specification for BigInteger has some subtle issues that may complicate your task. Read the
specifications carefully, keeping the following issues in mind:

Endian The RSA algorithm specified here calls for the first byte from the file to represent the
least significant bits of the number passed into the algorithm. Such a numeric representation is
said to be little-endian. However, the relevant constructors for the BigInteger class expect a big-
endian byte array in which the most significant byte comes first. These are opposite but equally
valid conventions. Your code will need to deal with the difference correctly to earn full credit.
Switching endianness can be achieved by reversing the byte array representing a number. In your
program, this switch will need to occur whenever a BigInteger is created or when its bytes are
retrieved during RSA encryption and decryption.

CS2112 Fall 2014 12/15 Assignment 2

http://stackoverflow.com/questions/11415160/how-to-enable-java-keyword-assert-in-eclipse-in-program-wise
http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html
http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html

Sign The BigInteger() constructor expects a byte array in the two’s-complement representa-
tion. This means that the most significant bit of the first byte represents the sign of the number.
In fact, bytes themselves are in two’s complement: using 8 bits, they represent numbers between
−128 and 127. A positive BigInteger may therefore need an extra zero byte in the most signif-
icant position to avoid having the number interpreted as negative. For example, the array {-128}

represents −128. To represent positive 128, we need the longer byte array {0, -128}. You are
likely to encounter this issue both when constructing BigIntegers and when converting them
back into byte arrays.

Character encoding Plaintext bytes outside the ASCII range of [0, 127] will show up as nega-
tive values in the range [−128,−1]. For the purpose of representing the number to be encrypted,
however, we are interpreting bytes as unsigned integers in the range [0, 255], so −128 becomes
128 and −1 becomes 255. The BigInteger constructor should take care of most of this behind
the scenes, except for the most significant byte of the given array.

The ISO-8859-1 character set should be helpful for this; see java.nio.charset.Charset.
You can create a Charset using the forName method and then use that character set to do en-
coding and decoding of strings to and from byte arrays. Equivalently, you can also pass the string
"ISO-8859-1" as an argument to certain String methods and constructors to specify that you
want to use this encoding into bytes.

7.5 Hex editors

For this assignment, you may find it useful to be able to view and edit bytes in hexadecimal form.
This can be done using a hex editor such as HexFiend for Mac or HexEdit for Windows. You can
also view an integer n in base 16 using Integer.toString(n, 16).

8

For full credit, you are not required to do anything more than what is specified so far, but for
good you may add additional features. Possible extensions include but are not limited to the
following:

• Randomized RSA padding.
:

• Cipher block chaining for stronger RSA (instead of the current “electronic codebook” encryption
mode).

:
• Cryptanalysis for simple substitution ciphers, or other ciphers such as Vigenère, and a command

to decrypt such messages.
:

• Digraph (two-character sequence) frequency analysis to more accurate automatic decryption
than single-letter frequency analysis.

:

CS2112 Fall 2014 13/15 Assignment 2

http://en.wikipedia.org/wiki/Two%27s_complement
http://en.wikipedia.org/wiki/Two%27s_complement
http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher-block_chaining_.28CBC.29

• A route cipher that uses a different pattern, e.g., going diagonally or spiraling inwards (FYI,
diagonal patterns only work on grids with more columns than rows). Be sure to specify what the
pattern is through documentation and your README.txt file.

:
• More secure storage of ciphers in files.

:
• Additional ciphers of your choice.

:
Make sure to document anything you do that goes beyond what is requested, and be especially

sure that any extensions you make do not break the required functionality of your program.

9 Submission

You should compress exactly these files into a zip file that you will then submit on CMS:

• Source code: Because this assignment is more open than the last, you should include all source
code required to compile and run your project.
• README.txt: This file should contain your name, your NetID, all known issues you have with

your submitted code, and the names of anyone you have discussed the assignment with. It should
also include descriptions of any extensions you implemented.

Do not include any files ending in .class.
All .java files should compile and conform to the prototypes we gave you. We write our own

classes that use your classes’ public methods to test your code. Even if you do not use a method we
require, you should still implement it for our use.

A Full RSA Example

Consider encrypting and decrypting the plaintext message I love CS2112 using an RSA cipher
with

n = 1093733205710804998199890334068767166455920362828704765160762785
7499483958630357076021298990643044443078830573207441251383385554
0595306533636002574137640210725086799272942906615619662751138490
7081299171319768555238149258992942399208388665959233718761302432
26847351820673092753217938229621222197931912046784793

e = 157307166947463324293191
d = 5051344722702808401081282712266153060988904798305842766107188088

5908654445646155458691942425898014706411932503960880426195998687
5931918963365832849565604072385256625773752537810929752797947864
1740341834159319848666223848546326674700490685819268998953869293
3170796325885997807827620143533305258355518889959511

After encrypting the plaintext using the above RSA public key, the following is the expected
ciphertext (in hex), which might not be readable otherwise.

CS2112 Fall 2014 14/15 Assignment 2

d6db 6e83 4048 c291 593f 6ea9 69ba 30c2

c6a1 d152 37f4 51e9 684a 32e2 ea07 a9e6

7d35 27bc 41a7 f58f ed4c 0ac4 afa5 f06b

3270 6c3b c730 0772 3c23 c795 a3a2 bfae

1ac8 5188 9cc8 319c fb37 b9d9 75b3 4e82

719e 6892 8171 fac8 2885 ce54 88dd 4d83

e663 6ee9 9dc5 618e 4728 aa69 ea0c ac1d

e89e 4d81 5b9c 9443 f399 42aa 9b8e d996

If your RSA cipher is working correctly, but does not switch endianness during encryption, you
would see the following output after encryption (in hex). If this is your output, make sure you are
switching endianness correctly before creating a BigInteger object.

fd77 0c6e dde7 aace c2d9 1d82 8b0f 7175

6f55 4721 e3ad b241 fc43 7b4c 9d07 c330

9727 4bc5 ae96 5361 a869 9c60 3e56 8012

dfdc f01a 76da 29e7 2d2c 6170 b7db 00b2

596f 5c98 ebbf 49d0 beeb a633 9804 45a3

03d3 a4b6 f1dd 489c 7838 4d46 2965 0e58

bb95 bdef 70d4 2691 ae88 76dd 1f78 95db

524c 1a4b 27d6 ba53 284d 584f 6fc6 ec8b

Decrypting the correct ciphertext should yield the original message, I love CS2112.
If you had the correct encrypted message, but you do not switch endianness during decryption,

you would see this output after decryption: 2112SC evol I, the original message backwards. If
this is your output, make sure you are switching endianness correctly after reading bytes from a
BigInteger object.

If your output differs from above after either encryption or decryption, something else is likely
going wrong. Ensure the correctness of your ChunkReader independent of the encryption process
and pay special attention to the order in which you are performing operations on your data bytes.
The order should be symmetric for the encryption and decryption steps.

CS2112 Fall 2014 15/15 Assignment 2

	Updates
	Instructions
	Grading
	Partners
	Documentation
	Provided interfaces

	Design overview document
	Monoalphabetic and transposition ciphers
	Overview
	The Caesar cipher
	Random substitution cipher
	The Vigenère cipher
	The route cipher

	Implementation
	Letter encoding
	Saving the cipher

	Cipher cracking using frequency analysis
	Implementation

	RSA encryption
	The algorithm
	Key generation
	Encryption
	Decryption
	Why does this work?

	Implementation
	Dealing with large numbers
	Message format and padding
	Saving the keys
	Additional requirement

	Useful resources

	Command line invocation
	Examples
	Errors

	Advice
	Start early
	Use assertions
	Build and test incrementally
	Read specs carefully
	Hex editors

	Karma
	Submission
	Full RSA Example

