
CS2112—Fall 2012
Homework 4

Parsing and Fault Injection
Due: Tuesday, October 16, 11:59PM

Compilers and bug-finding systems operate on source code to produce, respectively, compiled
code and lists of possible bugs detected. This software needs a lot of test cases, and test cases that
are programs are expensive to produce. Fault injection is a technique for inexpensively generating
such test cases. The idea is to take a single correct, valid program and make small random changes
to it to produce many useful test cases.

For testing a compiler, we want both test cases that are valid programs in the programming
language, and also test cases that are invalid programs. For bug finders, the test cases are valid
programs that contain bugs. In this assignment, you will be using fault injection to implement part
of the final project for the course. You will use fault injection to implement mutations in a program
controlling a simulated critter.

In this assignment, you will also build a parser for a simple language and a pretty-printer that
can print out parsed programs in a nicely formatted form.

0 Changes

• 10/5: The due date has been moved back to compensate for Fall Break and the prelim.

1 Instructions

1.1 Group Project

This assignment is the first part of the group project for the course. The programming language you
will be parsing, pretty-printing, and injecting faults into will be the language controlling simulated
creatures. You will need to read the project specification to find out more about the final project
and the language you will be working with in this assignment. The faults that are being injected
are those corresponding to the mutations in Section 9 of the project specification.

1.2 Partners

You will work in a group of two students for this assignment. Obviously, it is important that you
find your partner very soon. Piazza has support for finding a partner.

1.3 Overview Document

Starting with this assignment, we expect your group to submit an overview document. You will
want to read the Overview Document Specification to learn what we are expecting. Writing a clear

CS2112 Fall 2012 1/6 Homework 4

http://www.cs.cornell.edu/courses/cs2112/2012fa/project/project.pdf
http://www.cs.cornell.edu/courses/cs2112/2012fa/hw/overview-requirements.html

document with good use of language is important.
We are requiring you to submit an early draft of your design overview document on Friday

before the assignment is due. You may not be able to predict what your design and testing strategy
will look like in full at that point, but we want to see how far you have gotten. We will aim to get
you quick feedback on this draft.

1.4 Restrictions

You may use any standard Java libraries from the Java SDK. However, you may not use a parser
generator. As usual, we expect you to stick to Java 6 features and avoid features found only in
Java 7.

2 Parsing

2.1 Overview

Parsing involves converting an input sequence of text, such as a program, into a tree structure
according to a grammar. The Java compiler, for example, is a parser that converts programs you
write into an executable form. You will apply this same idea to parse a program written in a critter
language into an internal abstract syntax tree representation that your program can understand,
execute, and modify.

The grammar for the language you will be parsing is given in the project specification. The
grammar describes the concrete syntax of critter programs, including all the tokens that are part of
the input.

However, the job of the parser is not construct the concrete syntax tree; instead, it should build
an abstract syntax tree.

2.2 Abstract Syntax Trees

An abstract syntax tree (AST) represents the syntax of some input while avoiding representing
parts of the syntax that do not affect the meaning of the input. For example, the expressions
(2+3*4), 2+(3*4), and (2) + (3)*(4) all would have the same abstract syntax tree, because
the parentheses are only there to guide the construction of the tree. Figure 1 shows this abstract
syntax tree, along with the concrete syntax tree (parse tree) for 2+(3*4). The AST is shown on
the left in two different forms: the top represents how we might think of the AST, while the bottom
corresponds more closely to the code, and uses some of the classes we have supplied to you for
use in AST construction.

Because the tree structure implicitly represents many syntax details, it omits any syntax that
is unnecessary. This is what makes it different from a concrete syntax tree or a parse tree, which
include all syntax included in a program.

You will need to design and implement a class hierarchy to represent this tree where the leaves
are subclasses of Node. By giving Node the right methods, it will be possible to recursively

CS2112 Fall 2012 2/6 Homework 4

2

+

*

3 4

expr

abstract syntax tree parse tree

term

factor factor+

atom

4

atom * atom

3

atom

2 (expr)

factor

termBinaryOp(+)

Num(2) BinaryOp(*)

Num(3) Num(4)

Figure 1: Abstract and concrete syntax trees for 2+(3*4)

implement various useful functionality, including fault injection and, later, evaluation.

2.3 Provided Classes

We have provided an implementation of a Tokenizer as well as interfaces and some classes to get
you started with defining your AST. You may not need to use all of these but you will probably
need to add more.

3 Fault Injection

Since we are using fault injection to simulate a genome mutation for a critter, see the project
specification for how this mutation is to be done. The key to correct fault injection is that for this
project, it will mutate a program in such a way that the resulting program is still a legal critter
program, though it does not, perhaps, do what it was originally intended to do.

There is some flexibility in how to interpret the mutation rules given in the project specification.
You should identify any ambiguities you see and explain how you have resolved them. One rule
of thumb is that it should be possible, though some sequence of mutations, to change any program
into any other program.

CS2112 Fall 2012 3/6 Homework 4

4 Pretty-Printing

You should be able to print out programs in the same syntax they were written in, meaning that
the programs you print would generate the same abstract syntax tree if you were to parse them
again. Pretty-printing should make use of indentation (though not the ASCII tab character!) and
line breaks in order to make output readable and, well, pretty.

5 User Interface

Your program must support the following command-line interface:

• java -jar <your jar> <input file>

parse the file input file as a critter program and pretty-print the the program to standard
output.

• java -jar <your jar> --mutate <n> <input file>

parse the file input file as a critter program and apply n mutations. After each mutation,
print a description of the kind of mutation that has been applied and pretty-print the program.

6 Overview of Programming Tasks

Because you will want to figure out with your partner how to break up the work involved in this
assignment, it is good to start thinking about some of the major tasks involved:

• Implementing the main program and command-line handling.

• Designing and implementing a class hierarchy of classes for representing abstract syntax
trees. These will be subclasses of Node. We have given you a start on some of these classes,
but you will likely need to add more.

• Implementing the Parser class to generate abstract syntax trees.

• Implementing pretty-printing functionality, as methods on AST nodes.

• Implementing a class or classes to perform fault injection. It is up to you to design the
interfaces for these classes.

CS2112 Fall 2012 4/6 Homework 4

7 Written problem

Recall that a function f(n) is O(g(n)) if there exist constants k and n0 such that for all n ≥ n0,
f(n) ≤ kg(n). The constants k and n0 together are a witness to the fact that f(n) is O(g(n)).

For each of the following functions, show by giving a witness that it is O(n2), or else show that
it isn’t O(n2) by arguing that no such witness can exist.

• 3n2 + 10n + 1

• 2n

• n lg n

• n3/ lg n

• f(n) + h(n), where each of f(n) and h(n) are O(n2).

8 Submission

You should compress exactly these files into a zip file that you will then submit on CMS:

• Source code: You should include all source code required to compile and run the project.

• Tests: You should include code for all your test cases.

• overview.txt/html/pdf: This file should contain your overview document.

Do not include any files ending in .class.
You should also separately submit your work on the written problems in written-problems.txt

(.doc and .pdf also permitted).

9 Tips

Working with a partner may be challenging. Some tips:

• Meet with your partner as early as possible to work out the design and to divide up the
responsibilities for the assignment. Keep meeting and talking as the project progresses. Be
prepared for your meetings. Be ready to present proposals to your partner for what to do,
and to explain the work you have done.

• The way to partition an assignment into parts that can be worked on separately is to first
agree on what the different modules will be, and further, exactly what their interfaces are,
including detailed specs.

CS2112 Fall 2012 5/6 Homework 4

• This project is a great opportunity to try out pair programming, in which you program in a
pilot/copilot mode. It’s fun. It also tends to result in fewer bugs. A key ingredient is to give
the person typing the job of convincing the other person that the code meets the spec. Of
course, you need to agree on a spec first.

• It might seem as if you are working harder than your partner. But remember that when you
go to implement something, it typically turns out to be twice as hard as you thought. So what
your partner is doing is also twice as hard as it looks. If you think you are working twice as
hard as your partner, you’re probably about even!

• We encourage you to use a version control system such as Subversion or Git to manage your
code so that you and your partner can work separately when necessary. We’ll be covering
this in lab.

As usual, we encourage you to read all Piazza posts because often your questions have already
been asked by someone else—even before it occurs to you to ask. You will save a lot of time this
way.

CS2112 Fall 2012 6/6 Homework 4

	Changes
	Instructions
	Group Project
	Partners
	Overview Document
	Restrictions

	Parsing
	Overview
	Abstract Syntax Trees
	Provided Classes

	Fault Injection
	Pretty-Printing
	User Interface
	Overview of Programming Tasks
	Written problem
	Submission
	Tips

