
CS2112—Fall 2012
Assignment 1

Radio Recommender System
Due: Tuesday, September 4, 11:59PM

This assignment is intended to refresh your knowledge of Java and the Java API. You will write
a complete application that performs I/O and handles errors. You will need to design data represen-
tations and implement algorithms to process the data. It is roughly equivalent to a comprehensive
CS1110 assignment.

In this assignment, you are building a music recommendation system. In recent years, there has
been much research into how to recommend products to users based on the ratings of other, similar
users. This application might be used by Internet radio stations such as Pandora, Grooveshark, and
Spotify. We describe the key recommendation algorithms below; your job is to implement them as
part of a larger program.

0 Instructions

0.1 Grading

Solutions will be graded on both correctness and style. A correct program compiles without errors
or warnings, and behaves according the the requirements given here. A program with good style is
clear, concise, and easy to read.

A few suggestions regarding good style may be helpful. You should use brief but mnemonic
variables names and proper indentation. Your code should include comments as necessary to
explain how it works, but without explaining things that are obvious.

0.2 Partners

You must work alone for this assignment. But remember that the course staff is more than happy to
help with problems you run into. Use Piazza for questions, attend office hours, or set up a meeting
with any course staff member.

0.3 Updates

Keep an eye on this section for a summary of any updates that have occurred since the initial
release of the assignment.

CS2112 Fall 2012 1/8 Homework 1

1 Familiarizing yourself with the code

1.1 Building the documentation

Open the provided code in Eclipse. Follow the instructions at

http://www.cis.upenn.edu/~matuszek/General/Pages/eclipse-faq.html#run javadoc

to build Javadoc for this project from within Eclipse. When the documentation finishes building,
you should be able to view all the documentation from your web browser.

We have given you some documentation so that you can get started on the assignment. Feel
free to expand upon this documentation in your final submission.

1.2 Project structure

You will build four classes for this assignment:

Station represents and stores information relevant to a radio station. This information includes,
but not limited to, a name, a unique station ID, and the number of songs it has played so far.

Song represents and stores information relevant to a song. This information includes, but not
limited to, a name, an artist, a unique song ID, and an array containing how many times the
song is played on each radio station.

Parser parses the files containing the information about radio stations, songs, and song logs. After
parsing, it constructs the list of songs and radio stations. The song logs are handled in a
separate method.

RadioRecommenderSystem provides an interactive console, recommends songs for radio sta-
tions, displays song statistics, and calculates similarity between songs or radio stations. The
class contains the main method which loops indefinitely asking for user inputs.

2 Stations and songs

2.1 Input files

The homework’s zip file contains a list of stations, a list of songs, and a song log. The first line
of the station file indicates the number of radio stations r. The remaining r lines are semicolon-
delimited lines describing a single radio station in the format <Station Name>;<Station ID>.
The station IDs are arbitrary nonnegative integers and may be given in any order. There may be
additional spaces surrounding a station name. Your task is to trim these spaces so that each name
begins and ends with non-space characters. For instance, the following represents a valid station
file, where indicates a space.

CS2112 Fall 2012 2/8 Homework 1

http://www.cis.upenn.edu/~matuszek/General/Pages/eclipse-faq.html#run_javadoc

2

 Radio Disney ;42

 BBC ;17

There are two stations described above. One is “Radio Disney” (after trimming spaces) with an ID
of 42 and the other is “BBC” with an ID of 17.

The song file is similar to the station file, where the first line indicates the number of songs s and
the remaining s lines are in the format <Song Name>;<Song Artist>;<Song ID>. The song IDs
are arbitrary nonnegative integers and may be given in any order. There may be additional spaces
surrounding a song name or an artist and you need to trim these spaces. For instance, the following
represents a valid song file.

3

Thriller ; Michael Jackson ;25

 Skeleton Boy; Friendly Fires ;47

Rainbow in the Dark;Das Racist;12

In our example set, the first line tells us that there are three songs in this file. The second song
has an ID of 47, is named Skeleton Boy, and was performed by Friendly Fires.

The song log file contains songs played at radio stations in chronological order. Each line of
the log has the format <Station ID>;<Song ID>. For simplicity, the song indicated in line i of
the log was played at time i. You may assume that exactly one station plays one song for each time
period. That is, if there are n lines in the log, for any i satisfying 1 ≤ i ≤ n, exactly one station
plays exactly one song at time i. The following represents a valid song log file.

42;25

42;25

17;12

42;25

42;25

42;25

42;25

17;47

42;27

In the above log, BBC plays Rainbow in the Dark at time 3 and Skeleton Boy at time 8. Radio
Disney plays Thriller at time 1, 2, 4, 5, 6, 7. Perhaps BBC is an indie-rock radio station, and Radio
Disney is likely a Michael Jackson tribute station.

Keep in mind that we want to characterize stations by their playlists so that we can make
suggestions for other similar songs to play on these stations.

You may assume that every file we will provide (and use to test) will be formatted correctly.

2.2 Class: Station

The Station class has a constructor, a name, an ID, and an instance variable that stores the length
of the playlist on this station. Create appropriate accessor methods for this class. Insert additional

CS2112 Fall 2012 3/8 Homework 1

instance variables as necessary to make the recommendation process—described below—efficient.
Furthermore, rewrite the toString() method to return the following string-based representa-

tion of a station: “<Station ID>. <name>”, such as “17. BBC”.

2.3 Class: Song

The Song class has a constructor, private instance variables for the name, artist, and ID of the song,
and appropriate accessors for these variables. It also has an array stationPlays, a list of the
number of times this song is played on each radio station’s playlist. This could be zero or more
times per station. Insert additional instance variables as necessary to make the recommendation
process efficient.

Furthermore, rewrite the toString() method to return the following string-based representa-
tion of a song: “<Song ID>. <artist> - <name>”, such as:

47. Friendly Fires - Skeleton Boy.

There are two additional public methods for you to implement. getStatistics() returns an
array of length 6 containing basic statistics about this song. This array should contain the following
fields in this order:

0. The average number of plays of this song on stations that carry it. That is, we only calculate
stations that play this song at least once. Radio Disney plays Thriller 6 times but BBC never
plays it. Therefore, the average number of times Thriller is played is 6 times across all the
stations that carry it.

1. The total number of plays across all stations.

2. The ID of the station that plays this song the most. If there is a tie, this should be the lowest
station ID.

3. Maximum number of plays on any one station.

4. The ID of the station that plays this song the least. If there is a tie, this should be the highest
station ID.

5. Minimum number of plays on any one station. This could be zero.

getLastPlayed() takes a station ID and returns the last time step this song is played on the
given station, or zero if this song has never played on the given station. In the above example,
calling the method on Skeleton Boy object with BBC, we should receive 8 in return.

2.4 Class: Parser

The Parser class is responsible for turning the datasets into arrays of Song objects and Station
objects containing the relevant information including that from the song log. The constructor
should process station and song information. A separate method processSongLog() handles the

CS2112 Fall 2012 4/8 Homework 1

song log. While there are many ways to handle File I/O, we recommend that you use a class that
works well with newlines and custom delimiters. It is inefficient to work character by character the
whole time and we will penalize submissions that read the files in that fashion.

You should assume that the number of queries to be performed when the recommendation
system is running far exceeds the numbers of stations and songs combined. When storing the
information, therefore, you should make the station and song lookups as efficient as possible. In
this project, you are not allowed to use classes in java.util package such as HashMap. Arrays
should be the primary storage for this assignment.

3 Class: RadioRecommenderSystem

This class will handle most of the data manipulation in order to get our recommendation system
running. You will have to remember to throw and catch exceptions where appropriate.

3.1 Similarity methods

There are two methods that calculate the similarity of two objects: songSimilarity() and
stationSimilarity(). These methods return a double between 0 and 1 (inclusive) which mea-
sures how similar two songs or stations are. The higher the value, the more similar the two objects.
It follows that a song or a station has a similarity of 1.0 to itself.

The method we will use for measuring similarity is known as cosine similarity and is described
in Section 3.1.2 of [1]. For example, suppose song A has the stationPlays vector [a1, a2, . . . , ar]
and song B has the stationPlays vector [b1, b2, . . . , br]. The similarity between them is defined
by

a1b1 + a2b2 + · · ·+ arbr√
a2

1 + a2
2 + . . . + a2

r

√
b2
1 + b2

2 + · · ·+ b2
r

.

The same formula applies to station similarity, where the vector used contains the number of times
each song is played at a particular station.

For example, suppose there are five songs, Station A has played songs 4, 5, 3, 4, 4, 5, 1, and
Station B has played songs 1, 1, 4, 2, 3, 2, 2, 5, 2. These two stations would have the following
similarity:

1 ∗ 2 + 0 ∗ 4 + 1 ∗ 1 + 3 ∗ 1 + 2 ∗ 1√
12 + 02 + 12 + 32 + 22

√
22 + 42 + 12 + 12 + 12

= 0.431.

The two methods closestStation() and closestSong() should return the ID of the station
or song ID that is most similar to the station or song corresponding to the ID provided. In case of
a tie, return the lowest ID.

If a station has an empty playlist and similarity is done against it, then stationSimilarity()

should return zero no matter what the other station is, as we can make no assumptions out of no
information. Similarly, if a song has not been played on any station, then songSimilarity()

should return zero no matter what the other song is.

CS2112 Fall 2012 5/8 Homework 1

Useful resources

The paper cited is available through the ACM portal. You may need to be on campus to access this
link.

3.2 Building a recommendation system

All the building blocks are in place for your recommendation system. Believe it or not, you have
actually completed the hardest parts! All that remains is to use what you have constructed to build
a recommendation system.

We adapt the algorithm available in Section 3.2.1 of [1]. It takes the weighted average of the
number of plays of all songs other than the radio station for which a recommendation is being
made. Then, we apply a multiplier to the resulting value from the original algorithm so that songs
played less recently on that station are more likely to be chosen. Specifically, suppose there are
four radio stations. To recommend song s to station r3, the system computes

(
e−1/

√
TS

)(
a3 +

(c1 − a1) · sim(r1, r3) + (c2 − a2) · sim(r2, r3) + (c4 − a4) · sim(r4, r3)

sim(r1, r3) + sim(r2, r3) + sim(r4, r3)

)
,

where

• TS is the elapsed time since the most recent play of s on station r3, calculated as follows. Suppose
all the stations have played N songs in total and song s was heard last time on r3 at time ts, then
TS = N + 1− ts.

• ai is the average number of times any song is played at station ri, including those played zero
times.

• ci is the number of times song s has been played at station ri.

• sim(ri, rj) is the similarity between stations ri and rj .

This algorithm should be implemented in the method

makeRecommendation(intrecSongID, intradioID)

The bestRecommendation(int radioID) method should return the song which is the best rec-
ommendation for the given radio station. In case of a tie, return the song whose most recent play
on the given station was earliest in time.

Useful resources

• The paper referenced from the previous section.

• You may find it useful to create a small dataset to test your formulas.

CS2112 Fall 2012 6/8 Homework 1

http://delivery.acm.org/10.1145/1730000/1722966/p4-su.pdf?key1=1722966&key2=6535365921&coll=DL&dl=ACM&CFID=6996826&CFTOKEN=22728653

3.3 The main Method

The last piece of this program is the main method. It receives the path to the directory where the
three files are located as the first argument to the program. The main method should first ask for
the names of the files containing the station and song lists and then create a parser with the folder
path and the names of the above two input files. Finally, it creates a RadioRecommenderSystem

instance. Finally, it should loop indefinitely asking for user input, until the command “exit” is
issued.

The user may provide any of the following eight commands via the console:

• importlog <logFilename>: Appends the current song log with the information provided in
the given file. This file is assumed to be in the same folder as given to the main method. The
time steps should continue from the current log. For instance, if N songs has been played in
total, the first song in the new log is played at time N + 1.

• similarsong <song ID>: Finds and prints the most similar song to the chosen song.

• similarradio <station ID>: Finds and prints the most similar radio station to the chosen
station.

• stats <song ID>: Prints the statistics of the chosen song.

• lastheardon <station ID> <song ID>: Finds and prints the most recent time the given
song is played on the given station.

• lastplayed <song ID>: Finds and prints the most recent time the given song is played on any
station.

• recommend <station ID>: Recommends a song to the chosen station.

• exit: Exits the program.

If at any point an unrecognized or invalid command is written, the program should output a
helpful message explaing what is wrong, and request input again. If no songs have been played,
the user should be informed and the program should continue to request input.

4 Extensions

For full credit, you are not required to do anything more than what is specified here. But for good
karma you may add additional features. You might allow additional commands, give useful error
messages when parsing incorrectly formatted input, support alternative recommender algorithms,
or even produce graphical output. Or something else that you think is cool. You only get good
karma, not points, so if you do go beyond what is required, make sure that your extensions do not
interfere with required functionality. Be sure to tell us about any extensions in README.txt.

5 Submission

You should compress exactly these files into a zip file that you will then submit on CMS:

CS2112 Fall 2012 7/8 Homework 1

• README.txt: This file should contain your name, your NetID, all known issues you have with
your submitted code, and the names of anyone you have discussed the homework with.

• Song.java

• Station.java

• Parser.java

• RadioRecommenderSystem.java

Do not include any files ending in .class.
All .java files should compile and conform to the prototypes we gave you. We write our own

classes that use your classes’ public methods to test your code. Even if you do not use a method
we require, you should still implement it for our use in testing your code.

[1] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative filtering techniques.
Adv. in Artif. Intell., 2009:4:2-4:2, January 2009.

CS2112 Fall 2012 8/8 Homework 1

	Instructions
	Grading
	Partners
	Updates

	Familiarizing yourself with the code
	Building the documentation
	Project structure

	Stations and songs
	Input files
	Class: Station
	Class: Song
	Class: Parser

	Class: RadioRecommenderSystem
	Similarity methods
	Building a recommendation system
	The main Method

	Extensions
	Submission

